Neurotoxicology and teratology
-
Neurotoxicol Teratol · Mar 2011
Protective effect of L-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: implications of modulating kynurenate as a protective strategy.
The neuroactive metabolite at the kynunerine pathway, kynurenic acid (KYNA), is a well-known competitive antagonist at the co-agonist glycine site of the N-methyl-D-aspartate receptor (NMDAr), and also decreases the extracellular levels of glutamate by blocking α7-nicotinic acetylcholine receptor (α7-nAchr) located on glutamatergic terminals. KYNA has been often reported to be neuroprotective in different neurotoxic models. The systemic administration of L-kynurenine (L-KYN)--the precursor of KYNA--together with probenecid (PROB)--an inhibitor of organic acids transport--to rodents increases KYNA levels in the brain in a dose-dependent manner. ⋯ For all markers evaluated, we observed protective effects of L-KYN+PROB on the dopaminergic damage induced by 6-OHDA. Our results suggest that this strategy was useful to mitigate dopaminergic toxicity in the hemiparkinsonian model. The combined use of L-KYN and PROB is a valuable tool to modulate glutamatergic and cholinergic activities, presumably by means of increased levels of endogenous KYNA.
-
Neurotoxicol Teratol · Jan 2011
Multicenter StudyPreadolescent behavior problems after prenatal cocaine exposure: Relationship between teacher and caretaker ratings (Maternal Lifestyle Study).
We previously reported an association between prenatal cocaine exposure (PCE) and childhood behavior problems as observed by the parent or caretaker. However, these behavior problems may not manifest in a structured environment, such as a school setting. ⋯ Children with high PCE are likely to manifest externalizing behavior problems; their behavior problem scores at 7 years from either report of teacher or parent remained higher than scores of non-exposed children on subsequent years. Screening and identification of behavior problems at earlier ages could make possible initiation of intervention, while considering the likely effects of other confounders.
-
Neurotoxicol Teratol · Jan 2011
Motor and cognitive outcomes through three years of age in children exposed to prenatal methamphetamine.
Methamphetamine (MA) use among pregnant women is an increasing problem in the United States. The impact of prenatal MA exposure on development in childhood is unknown. ⋯ There were no differences in cognition as assessed by the BSID-II between the groups. There was a subtle MA exposure effect on fine motor performance at 1 year with the poorest performance observed in the most heavily exposed children. By 3 years, no differences in fine motor performance were observed. These findings suggest MA exposure has modest motor effects at 1 year that are mostly resolved by 3 years.
-
Neurotoxicol Teratol · Jan 2011
Estimated effects of in utero cocaine exposure on language development through early adolescence.
The potential longitudinal effects of prenatal cocaine exposure (PCE) on language functioning were estimated from early childhood through early adolescence in a large, well-retained urban sample of 451 full-term children (242 cocaine-exposed, 209 non-cocaine-exposed) participating in the Miami Prenatal Cocaine Study (MPCS). The sample was enrolled prospectively at birth, with documentation of prenatal drug exposure status through maternal interview, and toxicology assays of maternal and infant urine, and infant meconium. Age-appropriate versions of the Clinical Evaluation of Language Fundamentals (CELF) were used to measure total, expressive, and receptive language at ages 3, 5, and 12years. ⋯ Analyses of level of PCE showed a gradient, i.e. dose-dependent, relationship between PCE level and expressive, receptive, and total language scores in the models controlling for age, child's sex, and other prenatal drug exposures. With additional covariate control these findings were most stable for the total language score. The evidence supports an inference about an enduring stable cocaine-specific effect on children's language abilities, with no effect on language growth over time in the longitudinal trajectory of language development.
-
Neurotoxicol Teratol · Jan 2010
ReviewNeural progenitor cells as models for high-throughput screens of developmental neurotoxicity: state of the science.
In vitro, high-throughput methods have been widely recommended as an approach to screen chemicals for the potential to cause developmental neurotoxicity and prioritize them for additional testing. The choice of cellular models for such an approach will have important ramifications for the accuracy, predictivity and sensitivity of the screening assays. In recent years neuroprogenitor cells from rodents and humans have become more widely available and may offer useful models having advantages over primary neuronal cultures and/or transformed cell lines. ⋯ This review summarizes the state of the science regarding stem and neuroprogenitor models that could be used for screening assays, provides researchers in this field with examples of how these cells have been utilized to date, and discusses the advantages, limitations and knowledge gaps regarding these models. Data are available from both rodent and human stem and neuroprogenitor cell models that indicate that these models will be a valid and useful tool for developmental neurotoxicity testing. Full potential of these models will only be achieved following advances in neurobiology that elucidate differentiation pathways more clearly, and following further evaluation of larger sets of developmentally neurotoxic and non-toxic chemicals to define the sensitivity and predictivity of assays based on stem or progenitor cell models.