Oncogene
-
Hypoxia-inducible factor 1 (HIF-1), a transcription factor that is critical for tumor adaptation to microenvironmental stimuli, represents an attractive chemotherapeutic target. YC-1 is a novel antitumor agent that inhibits HIF-1 through previously unexplained mechanisms. In the present study, YC-1 was found to prevent HIF-1alpha and HIF-1beta accumulation in response to hypoxia or mitogen treatment in PC-3 prostate cancer cells. ⋯ Two modulators of the Akt/NF-kappaB pathway, caffeic acid phenethyl ester and evodiamine, were observed to decrease HIF-1alpha expression. Additionally, overexpression of NF-kappaB partly reversed the ability of wortmannin to inhibit HIF-1alpha-dependent transcriptional activity, suggesting that NF-kappaB contributes to Akt-mediated HIF-1alpha accumulation during hypoxia. Overall, we identify a potential molecular mechanism whereby YC-1 serves to reduce HIF-1 expression.
-
Alemtuzumab (Campath-1H) is a humanized IgG1 monoclonal antibody that targets the human CD52 antigen. CD52 is expressed by a variety of lymphoid neoplasms and most human mononuclear cell subsets. In 2001, alemtuzumab was approved for marketing in the United States and Europe for use in patients with fludarabine-refractory chronic lymphocytic leukemia (CLL). ⋯ Alemtuzumab is frequently associated with acute 'first-dose' reactions when administered intravenously, but is much better tolerated when administered subcutaneously without loss of therapeutic efficacy. Additional potential adverse events associated with alemtuzumab administration include myelosuppression as well as profound cellular immune dysfunction with the associated risk of viral reactivation and other opportunistic infections. Additional studies detailing the mechanism of action of alemtuzumab as well as new strategies for prevention of opportunistic infections will aid in the future therapeutic development of this agent.
-
Rituximab (chimeric anti-CD20 monoclonal antibody) is the first Food and Drug Administration approved antitumor antibody and is used in the treatment of B-non-Hodgkin's lymphoma (B-NHL). It is used as single monotherapy or in combination with chemotherapy and has improved the treatment outcome of patients with B-NHL. The in vivo mechanisms of rituximab-mediated antitumor effects include antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cell cytotoxicity (CDC), growth-inhibition and apoptosis. ⋯ These clones showed reduced expression of CD20 and hyperactivation of the above antiapoptotic signaling pathways and failure of rituximab to trigger the cells leading to inhibition of ADCC, CDC and chemo/immunosensitization. Interference with the hyperactivated pathways with various pharmacological and proteasome inhibitors reversed resistance. Furthermore, the above findings have identified several gene products that can serve as new prognostic/diagnostic biomarkers as well as targets for therapeutic intervention in B-NHL.
-
The vast majority of non-Hodgkin's lymphomas are of B-cell phenotype. Development of unlabeled or radiolabeled therapeutic monoclonal antibodies against the cell surface antigen, CD20, has revolutionized the treatment of these malignancies. It is clear that antibodies targeting other B-cell-specific molecules, such as CD22, also offer potential therapeutic benefit. ⋯ Data suggest that this agent is well tolerated, and can induce tumor regressions. Trials are currently evaluating its safety and activity in combination with rituximab (chimeric anti-CD20) and standard chemotherapy are ongoing. Initial results suggest that these regimens have acceptable toxicity, and that epratuzumab warrants further evaluation as an adjunct to standard lymphoma treatment regimens.
-
Transgenic mice overexpressing Notch4 intracellular domain (Int3) under the control of the whey acidic protein (WAP) or mouse mammary tumor virus-long terminal repeat promoters, develop mammary tumors. Microarray analysis of these tumors revealed high levels of c-Kit expression. Gleevec is a tyrosine kinase inhibitor that targets c-Kit, platelet-derived growth factor receptors (PDGFRs) and c-Abl. ⋯ To examine the signaling mechanisms underlying Notch4/Int3 tumorigenesis, we employed small interfering RNA (siRNA) to knock down c-Kit, PDGFRs and c-Abl alone or in combination and observed the effects on soft agar growth of HC11 cells overexpressing Int3. Only siRNA constructs for c-Kit and/or PDGFR-alpha were able to inhibit HC11-Int3 colony formation in soft agar. Our data demonstrate an inhibitory effect of Gleevec on Int3-induced transformation of HC11 cells and mammary tumors and indicate an oncogenic role for c-Kit and PDGFR-alpha tyrosine kinases in the context of Int3 signaling.