Oncogene
-
Targeted therapies are effective in subsets of lung cancers with EGFR mutations and anaplastic lymphoma kinase (ALK) translocations. Large-scale genomics have recently expanded the lung cancer landscape with FGFR1 amplification found in 10-20% of squamous cell carcinomas (SCCs). However, the response rates have been low for biomarker-directed fibroblast growth factor receptor (FGFR) inhibitor therapy in SCC, which contrasts to the relatively high rates of response seen in EGFR mutant and ALK-translocated lung cancers treated with epidermal growth factor receptor (EGFR) inhibitors and ALK inhibitors, respectively. ⋯ In contrast, FGFR1-amplified high FGFR1 protein-expressing lung cancers are sensitive to FGFR inhibitor monotherapy by downregulating ERK signaling. Addition of a PI3K inhibitor to these high FGFR1 protein-expressing cancers further sensitized them to FGFR inhibitor. These data reveal that biomarker-directed trials for FGFR1-amplified SCC require assessment of FGFR1 protein expression and uncover novel therapeutic strategies for FGFR1-amplified SCC with low FGFR1 protein expression.
-
MicroRNAs are important epigenetic regulators of protein expression by triggering degradation of target mRNAs and/or inhibiting their translation. Dysregulation of microRNA expression has been reported in several cancers, including prostate cancer (PC). We comprehensively characterized the proteomic footprint of a panel of 12 microRNAs that are potently suppressed in metastatic PC (SiM-miRNAs: miR-1, miR-133a, miR-133b, miR-135a, miR-143-3p, miR-145-3p, miR-205, miR-221-3p, miR-221-5p, miR-222-3p, miR-24-1-5p, and miR-31) using reverse-phase proteomic arrays. ⋯ Our results demonstrate that epigenetic silencing of these SiM-miRNAs can result in increased AR axis activity and cell proliferation, thus contributing to disease progression. We further demonstrate that a negative feedback loop involving miR-135a can restore AR expression under androgen-deprivation conditions, thus contributing to the upregulation of AR protein expression in castration-resistant PC. Finally, our unbiased proteomic profiling demonstrates that the majority of actual protein expression changes induced by SiM-miRNAs cannot be explained based on predicted direct interactions.
-
Accumulating evidence indicates that ovarian high-grade serous carcinoma (HGSC) originates from fallopian tube secretory epithelial cells (FTSECs). However, the molecular mechanisms underlying the initiation and progression of HGSC derived from FTSECs remains unclear. In this study, we found that the Hippo/Yes-associated protein (YAP) signaling pathway has a critical role in the initiation and progression of fallopian tube and ovarian HGSC. ⋯ Further, overexpression of wild-type YAP, or constitutively active YAP in immortalized FTSECs, induced cell proliferation, migration, colony formation and tumorigenesis. Moreover, the Hippo/YAP and the fibroblast growth factor (FGF) signaling pathways formed an autocrine/paracrine-positive feedback loop to drive the progression of the FTSEC-derived HGSC. Evidence in this study strongly suggests that combined therapy with inhibitors of YAP (such as verteporfin) and FGF receptors (such as BGJ398) can provide a novel therapeutic strategy to treat fallopian tube and ovarian HGSC.
-
The BRAF(V600E) mutation is found in approximately 40% of papillary thyroid cancers (PTC). Mice with thyroid-specific expression of Braf(V600E) (TPO-Braf(V600E)) develop PTC rapidly with high levels of serum thyroid-stimulating hormone (TSH). It is unclear to what extent the elevated TSH contributes to tumor progression. ⋯ In conclusion, BVE-PTC progression could be contained via p53-dependent OIS and TSH is a major disruptor of this balance. Simultaneous targeting of both MAPK and PI3K/AKT pathways offer a better therapeutic outcome against ATC. The current study reinforces the importance of rigorous control of serum TSH in PTC patients.
-
Syntenin, a tandem PDZ domain containing scaffold protein, functions as a positive regulator of cancer cell progression in several human cancers. We report here that syntenin positively regulates transforming growth factor (TGF)-β1-mediated Smad activation and the epithelial-to-mesenchymal transition (EMT) by preventing caveolin-1-mediated internalization of TGF-β type I receptor (TβRI). Knockdown of syntenin suppressed TGF-β1-mediated cell migration, transcriptional responses and Smad2/3 activation in various types of cells; however, overexpression of syntenin facilitated TGF-β1-mediated responses. ⋯ Biochemical analyzes revealed that syntenin inhibited the interaction between caveolin-1 and TβRI and knockdown of syntenin induced a massive internalization of TβRI and caveolin-1 from lipid rafts, indicating that syntenin may increase TGF-β signaling by inhibiting caveolin-1-dependent internalization of TβRI. Moreover, a positive correlation between syntenin expression and phospho-Smad2 levels is observed in human lung tumors. Taken together, these findings demonstrate that syntenin may act as an important positive regulator of TGF-β signaling by regulating caveolin-1-mediated internalization of TβRI; thus, providing a novel function for syntenin that is linked to cancer progression.