Brain, behavior, and immunity
-
Brain Behav. Immun. · Jul 2007
Involvement of glia in central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn).
Central sensitization is a crucial mechanism underlying the increased excitability of nociceptive pathways following peripheral tissue injury and inflammation. We have previously demonstrated that the small-fiber excitant and inflammatory irritant mustard oil (MO) applied to the tooth pulp produces glutamatergic- and purinergic-dependent central sensitization in brainstem nociceptive neurons of trigeminal subnucleus caudalis (Vc). Recent studies have implicated both astrocytes and microglia in spinal nociceptive mechanisms, showing, for example, that inhibition of spinal astroglial metabolism or spinal microglial p38MAPK activation can attenuate hyperalgesia in inflammatory pain models but have not tested effects of glial inhibitors on central sensitization in functionally identified spinal nociceptive neurons. ⋯ The i.t. application of SB or FA markedly attenuated the MO-induced increases in pinch RF size and responses to noxious stimuli and the decrease in activation threshold. Neither SB nor FA application significantly affected the baseline (i.e., pre-MO application) RF and response properties. These results suggest that glial metabolic processes are important in the development of Vc central sensitization.
-
Brain Behav. Immun. · Jul 2007
Comparative StudyChanges in immune and glial markers in the CSF of patients with Complex Regional Pain Syndrome.
Complex Regional Pain Syndrome is a severe chronic pain condition characterized by sensory, autonomic, motor and dystrophic signs and symptoms. The pain in CRPS is continuous, it worsens over time, and it is usually disproportionate to the severity and duration of the inciting event. This study compares cerebrospinal fluid (CSF) levels of pro- and anti-inflammatory cytokines, chemokines and several biochemical factors (glial fibrillary acidic protein (GFAP), the nitric oxide metabolites (nitrate plus nitrite), the excitatory amino acid neurotransmitter glutamate, calcium, total protein and glucose) in patients afflicted with CRPS to levels found in patients suffering with other non-painful or painful conditions. ⋯ The most common pattern was found in 50% (11 out of 22) of the CRPS patients and consisted of; elevated IL-6, low levels of IL-4 or IL-10, increased GFAP or MCP1 and increases in at least two of the following markers NO metabolites, calcium or glutamate. The results from this and other similar studies may aid in elucidating the mechanisms involved in the pathophysiology of CRPS. A better understanding of these mechanisms may lead to novel treatments for this very severe, life-altering illness.
-
Brain Behav. Immun. · Jul 2007
Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats.
Paclitaxel is a commonly used cancer chemotherapy drug that frequently causes painful peripheral neuropathies. The mechanisms underlying this dose-limiting side effect are poorly understood. Growing evidence supports that proinflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF), released by activated spinal glial cells and within the dorsal root ganglia (DRG) are critical in enhancing pain in various animal models of neuropathic pain. ⋯ Moreover, IL-10 gene therapy resulted in increased IL-10 mRNA levels in lumbar DRG and meninges, measured 2 weeks after initiation of therapy, whereas paclitaxel-induced expression of IL-1, TNF, and CD11b mRNA in lumbar DRG was markedly decreased. Taken together, these data support that paclitaxel-induced neuropathic pain is mediated by proinflammatory cytokines, possibly released by activated immune cells in the DRG. We propose that targeting the production of proinflammatory cytokines by intrathecal IL-10 gene therapy may be a promising therapeutic strategy for the relief of paclitaxel-induced neuropathic pain.
-
Brain Behav. Immun. · Jul 2007
Comparative StudyInterleukin-1 signaling modulates stress-induced analgesia.
Exposure to stressful stimuli is often accompanied by reduced pain sensitivity, termed "stress-induced analgesia" (SIA). In the present study, the hypothesis that interleukin-1 (IL-1) may play a modulatory role in SIA was examined. Two genetic mouse models impaired in IL-1-signaling and their wild-type (WT) controls were employed. ⋯ Interestingly, the analgesic response to moderate stress was markedly potentiated in the mutant strains, as compared with their WT controls. The present results support our previous findings that in the absence of IL-1, stress response to mild stress is noticeably diminished. However, the analgesic response to moderate stress is markedly potentiated in mice with impaired IL-1 signaling, corroborating the anti-analgesic role of IL-1 in several pain modulatory conditions, including SIA.
-
Brain Behav. Immun. · Jul 2007
Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine.
Accumulating evidence suggests that microglial cells in the spinal cord play an important role in the development of neuropathic pain. However, it remains largely unknown how glia interact with neurons in the spinal cord after peripheral nerve injury. Recent studies suggest that the chemokine fractalkine may mediate neural/microglial interaction via its sole receptor CX3CR1. ⋯ SNL also induced a dramatic reduction of the membrane-bound fractalkine in the dorsal root ganglion, suggesting a cleavage and release of this chemokine after nerve injury. Finally, application of fractalkine to spinal slices did not produce acute facilitation of excitatory synaptic transmission in lamina II dorsal horn neurons, arguing against a direct action of fractalkine on spinal neurons. Collectively, our data suggest that (a) fractalkine cleavage (release) after nerve injury may play an important role in neural-glial interaction, and (b) microglial CX3CR1/p38 MAPK pathway is critical for the development of neuropathic pain.