Annals of biomedical engineering
-
In this study, normal EEG series recorded from healthy volunteers and epileptic EEG series recorded from patients within and without seizure are classified by using Multilayer Neural Network (MLNN) architectures with respect to several time domain entropy measures such as Shannon Entropy (ShanEn), Log Energy Entropy (LogEn), and Sample Entropy (Sampen). In tests, the MLNN is performed with several numbers of neurons for both one hidden layer and two hidden layers. The results show that segments in seizure have significantly lower entropy values than normal EEG series. ⋯ The LogEn approach, which has not been experienced in EEG classification yet, provides the most reliable features into the EEG classification with very low absolute error as 0.01. In particular, the MLNN can be proposed to distinguish the seizure activity from the seizure-free epileptic series where the LogEn values are considered as signal features that characterize the degree of EEG complexity. The highest classification accuracy is obtained for one hidden layer architecture.
-
A new method for measuring the fixed charge density (FCD) in intervertebral disc (IVD) tissues employing a two-point electrical conductivity approach was developed. In this technique, the tissue is first confined and equilibrated in a potassium chloride (KCl) solution, and the tissue conductivity is then measured. This is then repeated with a second concentration of KCl solution. ⋯ The FCD of AF was significantly lower than that of NP tissue, similar to results in the literature for human IVD tissues. In order to verify the accuracy of the new method, the glycosaminoglycan (GAG) contents of the tissues were measured and used to estimate the tissue FCD. A strong correlation (R (2) = 0.84-0.87) was found to exist between FCD values measured and those estimated from GAG contents, indicating that the conductivity approach is a reliable technique for measuring the FCD of IVD tissues.
-
Retroperitoneal bleeding is commonly associated with blunt trauma to the abdomen. Current medical tools cannot be used for continuous monitoring of the bleeding. In the study, electrical impedance tomography (EIT) was applied to monitoring the retroperitoneal bleeding of an animal model. ⋯ In total, 20 mL of blood volume changes could be identified by EIT. The progression of the retroperitoneal bleeding can be monitored by EIT in the proposed animal model. It suggests EIT is potential as a useful tool for continuous monitoring of retroperitoneal bleeding after blunt trauma.
-
CINE phase-contrast MRI (CINE-MRI) was used to measure cerebrospinal fluid (CSF) velocities and flow rates in the brain of six normal subjects and five patients with communicating hydrocephalus. Mathematical brain models were created using the MRI images of normal subjects and hydrocephalic patients. In our model, the effect of pulsatile vascular expansion is responsible for pulsatile CSF flow between the cranial and the spinal subarachnoidal spaces. ⋯ In addition to normal intracranial dynamics, our model captures the transition to acute communicating hydrocephalus. By increasing the value for reabsorption resistance in the subarachnoid villi, our model predicts that the poroelastic parenchyma matrix will be drained and the ventricles enlarge despite small transmantle pressure gradients during the transitional phase. The poroelastic simulation thus provides a plausible explanation on how reabsorption changes could be responsible for enlargement of the ventricles without large transmantle pressure gradients.
-
Patients with a spinal cord injury (SCI) are susceptible to deep tissue injury (DTI), a necrosis in excessively deformed muscle tissue overlying bony prominences, which, in wheelchair users, typically occurs in the gluteus muscles under the ischial tuberosities. Recently, we developed a generic real-time, subject-specific finite element (FE) modeling method to provide monitoring of mechanical conditions in deep tissues deformed between bony prominences and external surfaces. We previously employed this method to study internal tissue loads in plantar tissues of the foot [Yarnitzky, G., Z. ⋯ These parameters generally had 3-times to 5-times greater values in patients with SCI compared with controls. Likewise, stress doses, defined as the integration of peak compression stress over time, were approximately 35-times and approximately 50-times greater in the subjects with SCI, the values referring to the highest of all peaks recorded throughout the trial, and to average of peaks over the trial, respectively. We believe that by allowing-for the first time-practical and continuous monitoring of internal tissue loads in patients with motosensory deficits, without any risk or interruption to their lifestyle, and either at the clinical setting or at home, the present method can make a substantial contribution to the prevention of severe pressure ulcers and DTI.