Viral immunology
-
Measles remains a public health concern due to a lack of vaccine use and vaccine failure. A better understanding of the factors that influence variations in immune responses, including innate/inflammatory and adaptive cellular immune responses, following measles-mumps-rubella (MMR) vaccination could increase our knowledge of measles vaccine-induced immunity and potentially lead to better vaccines. Measles-specific innate/inflammatory and adaptive cell-mediated immune (CMI) responses were characterized using enzyme-linked immunosorbent assays to quantify the levels of secreted IL-2, IL-6, IL-10, IFN-α, IFN-γ, IFN-λ1, and TNF-α in PBMC cultures following in vitro stimulation with measles virus (MV) in a cohort of 764 school-aged children. ⋯ Ethnicity was not significantly correlated with variations in measles-specific CMI measures. Our data suggest that innate/inflammatory and CMI cytokine responses to measles vaccine vary significantly by gender and race. These data further advance our understanding regarding inter-individual and subgroup variations in immune responses to measles vaccination.
-
Widespread vaccination with vaccinia virus (VACV) resulted in the eradication of smallpox; however, the licensed VACV-containing vaccines are associated with adverse events (AEs), making them unsuitable for certain high-risk populations. A better understanding of the host immune response following smallpox vaccination could result in vaccines with similar immunogenicity profiles to pre-eradication vaccines with a lower incidence of AEs. To study the immune response to VACV, we recruited 1,076 armed forces members who had been vaccinated with one dose of Dryvax(®). ⋯ We also detected strong correlations between the proinflammatory cytokines IL-1β, TNF-α, IL-6, and IL-12p40 (p<0.0001). These results further advance our knowledge of vaccinia-specific cellular immune responses. Notably, vaccine-induced proinflammatory responses were not correlated with neutralizing antibody titers, suggesting that further attenuation to reduce inflammatory immune responses may result in decreased AEs without sacrificing VACV immunogenicity and population seropositivity.
-
Influenza virus-like particles (VLPs) are effective vaccines against influenza infection, which can be produced either in insect cells by recombinant baculovirus (BV) infection or in mammalian cells by DNA plasmid transfection. However, VLPs produced from baculovirus/insect cells are difficult to purify due to baculovirus contamination; VLPs produced by plasmid transfection are limited by scale-up capability. In this study, a BacMam BV, in which three CMV-promoters drive the hemagglutinin, neuraminidase, and matrix of influenza virus was constructed. ⋯ This finding is particularly significant for producing easily purified VLPs. The BacMam system is an alternative strategy for VLP production, which is easy to scale up and purify. Besides, BacMam BV can be used as a gene delivery vector to produce VLPs in vivo, to stimulate immune responses.
-
The immunogenicity and efficacy of β-propiolactone (BPL) inactivated whole virion SARS-CoV (WI-SARS) vaccine was evaluated in BALB/c mice and golden Syrian hamsters. The vaccine preparation was tested with or without adjuvants. Adjuvant Systems AS01(B) and AS03(A) were selected and tested for their capacity to elicit high humoral and cellular immune responses to WI-SARS vaccine. ⋯ Although antibody titers had declined in all groups of vaccinated hamsters 18 wk after the second dose, the vaccinated hamsters were still partially protected from wild-type virus challenge. Vaccine with adjuvant provided better protection than non-adjuvanted WI-SARS vaccine at this later time point. Enhanced disease was not observed in the lungs or liver of hamsters following SARS-CoV challenge, regardless of the level of serum neutralizing antibodies.