The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology
-
Airway remodelling is a feature of asthma that contributes to loss of lung function. One of the central components of airway remodelling is subepithelial fibrosis. Interleukin (IL)-13 is a key T-helper 2 cytokine and is believed to be the central mediator of allergic asthma including remodelling, but the mechanism driving the latter has not been elucidated in human asthma. ⋯ IL-13 activated endogenous MMP-2 in asthma patients as compared to normal controls. In an ex vivo model, IL-13 potentiates airway remodelling through a mechanism involving TGF-β1 and MMP-2. These effects provide insights into the mechanism involved in IL-13-directed airway remodelling in asthma.
-
Angiogenesis is a critical determinant of alveolarisation, which increases alveolar surface area and pulmonary capillary blood volume in infants; however, our understanding of this process is very limited. The purpose of our study was to measure the pulmonary membrane diffusion capacity (DM) and pulmonary capillary blood volume (VC) components of the diffusing capacity of the lung for carbon monoxide (DLCO) in healthy infants and toddlers, and evaluate whether these components were associated with pro-angiogenic circulating haematopoietic stem/progenitor cells (pCHSPCs) early in life. 21 healthy subjects (11 males), 3-25 months of age, were evaluated. DLCO was measured under normoxic and hyperoxic conditions, and DM and VC were calculated. ⋯ In addition, DLCO and VC, but not DM, increased with an increasing percentage of pCHSPCs. The parallel increase in the membrane and vascular components of pulmonary diffusion is consistent with alveolarisation during this period of rapid lung growth. In addition, the relationship between pCHSPCs and VC suggest that pro-angiogenic cells may contribute to this vascular process.