FASEB journal : official publication of the Federation of American Societies for Experimental Biology
-
About 30% of the population of the United States suffers from acute or chronic pain, often of unknown cause. Among this group might be included patients with symptoms claimed to be caused by a poorly defined condition called "chronic Lyme disease" in which chronic pain is a major contributor. Since there is no evidence to indicate that chronic Lyme disease is due to a persistent infection and that extended antibiotic therapy is beneficial and safe, this condition should not be viewed solely as an infectious disease problem. Rather, it should be considered within the context of a broad-based, multidisciplinary approach to determining the cause of chronic pain per se and developing more effective strategies for its treatment as outlined in a recent report on pain issued by the Institute of Medicine.
-
Parkinson's disease (PD) is characterized by the presence of Lewy bodies containing phosphorylated and aggregated α-synuclein (α-syn). α-Syn is present in human body fluids, including blood plasma, and is a potential biomarker for PD. Immunoassays for total and oligomeric forms of both normal and phosphorylated (at Ser-129) α-syn have been used to assay plasma samples from a longitudinal cohort of 32 patients with PD (sampled at mo 0, 1, 2, 3), as well as single plasma samples from a group of 30 healthy control participants. The levels of α-syn in plasma varied greatly between individuals, but were remarkably consistent over time within the same individual with PD. ⋯ Immunoblots of plasma revealed bands (at 21, 24, and 50-60 kDa) corresponding to phosphorylated α-syn. Thus, phosphorylated α-syn can be detected in blood plasma and shows more promise as a diagnostic marker than the nonphosphorylated protein. Longitudinal studies undertaken over a more extended time period will be required to determine whether α-syn can act as a marker of disease progression.
-
Disc1 is a schizophrenia risk gene that engages multiple signaling pathways during neurogenesis and brain development. Using the zebrafish as a tool, we analyze the function of zebrafish Disc1 (zDisc1) at the earliest stages of brain and body development. We define a "tool" as a biological system that gives insight into mechanisms underlying a human disorder, although the system does not phenocopy the disorder. ⋯ These phenotypes are caused by alterations in the noncanonical Wnt pathway, via Daam and Rho signaling. The convergence and extension phenotype can be rescued by a dominant negative GSK3β construct, suggesting that zDisc1 inhibits GSK3β activity during noncanonical Wnt signaling. This is the first demonstration that Disc1 modulates the noncanonical Wnt pathway and suggests a previously unconsidered mechanism by which Disc1 may contribute to the etiology of neuropsychiatric disorders.
-
TMEM16A (ANO1) is a calcium-activated chloride channel (CaCC) expressed in secretory epithelia, smooth muscle, and other tissues. Cell-based functional screening of ∼110,000 compounds revealed compounds that activated TMEM16A CaCC conductance without increasing cytoplasmic Ca(2+). By patch-clamp, N-aroylaminothiazole "activators" (E(act)) strongly increased Cl(-) current at 0 Ca(2+), whereas tetrazolylbenzamide "potentiators" (F(act)) were not active at 0 Ca(2+) but reduced the EC(50) for Ca(2+)-dependent TMEM16A activation. ⋯ Analogs of activators were identified that fully inhibited TMEM16A Cl(-) conductance, providing further evidence for direct TMEM16A binding. The TMEM16A activators increased CaCC conductance in human salivary and airway submucosal gland epithelial cells, and IL-4 treated bronchial cells, and stimulated submucosal gland secretion in human bronchi and smooth muscle contraction in mouse intestine. Small-molecule, TMEM16A-targeted activators may be useful for drug therapy of cystic fibrosis, dry mouth, and gastrointestinal hypomotility disorders, and for pharmacological dissection of TMEM16A function.
-
Mechanical ventilation (MV) is a life-saving measure in many critically ill patients. However, prolonged MV results in diaphragm dysfunction that contributes to the frequent difficulty in weaning patients from the ventilator. The molecular mechanisms underlying ventilator-induced diaphragm dysfunction (VIDD) remain poorly understood. ⋯ Overlapping the gene expression profiles of MV human diaphragm and H₂O₂-treated muscle cells, we identify Fos, FoxO1, and Stat3 as regulators of Bim expression as well as of expression of the catabolic markers atrogin and LC3. We thus identify a novel Fos/FoxO1/Stat3-Bim intrinsic apoptotic pathway and establish the centrality of oxidative stress in the development of VIDD. This information may help in the design of specific drugs to prevent this condition.