FASEB journal : official publication of the Federation of American Societies for Experimental Biology
-
Comparative Study
D-cycloserine improves functional recovery and reinstates long-term potentiation (LTP) in a mouse model of closed head injury.
Traumatic brain injury triggers a massive glutamate efflux, activation of NMDA receptor channels, and cell death. Recently, we reported that NMDA receptors in mice are down-regulated from hours to days following closed head injury (CHI), and treatment with NMDA improved recovery of motor and cognitive functions up to 14 d post-injury. Here we show that a single injection of a low dose of D-cycloserine (DCS), a partial NMDA receptor agonist, in CHI mice 24 h post-injury, resulted in a faster and greater recovery of motor and memory functions as assessed by neurological severity score and object recognition tests, respectively. ⋯ However, DCS did not improve CHI-induced impairment in synaptic glutamate release measured by paired pulse facilitation (PPF) ratio in hippocampal CA1 region. Finally, CHI-induced reduction of brain-derived neurotrophic factor (BDNF) was fully restored following DCS treatment. Since DCS is in clinical use for other indications, the present study offers a novel approach to treat human brain injury.
-
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid produced by sphingosine kinase (SphK1 and 2). We previously showed that S1P receptors (S1P1, S1P2, and S1P3) are expressed in hepatic myofibroblasts (hMF), a population of cells that triggers matrix remodeling during liver injury. Here we investigated the function of these receptors in the wound healing response to acute liver injury elicited by carbon tetrachloride, a process that associates hepatocyte proliferation and matrix remodeling. ⋯ In keeping with these findings, PDGF-BB up-regulated S1P2 and SphK1 mRNAs, increased SphK activity, and S1P2 induced PDGF-BB mRNA. These effects were blunted in S1P2-/- cells, and S1P2-/- hMF exhibited reduced mitogenic and comitogenic responses to S1P. These results unravel a novel major role of S1P2 in the wound healing response to acute liver injury by a mechanism involving enhanced proliferation of hMF.
-
Parkinson's disease (PD), a neurodegenerative disorder, causes severe motor impairment due to loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). MPTP, a neurotoxin that causes dopaminergic cell loss in mice, was used in an animal model to study the pathogenic mechanisms leading to neurodegeneration. We observed the activation of apoptosis signal regulating kinase (ASK1, MAPKKK) and phosphorylation of its downstream targets MKK4 and JNK, 12 h after administration of a single dose of MPTP. ⋯ Coadministration of alpha-lipoic acid (ALA), a thiol antioxidant, abolished the activation of ASK1 and phosphorylation of downstream kinases, MKK4, and JNK and prevented the down-regulation of DJ-1 and translocation of Daxx to the cytosol seen after MPTP. ALA also attenuated dopaminergic cell loss in SNpc seen after subchronic MPTP treatment. Our studies demonstrate for the first time that MPTP triggers death signaling pathway by activating ASK1 and translocating Daxx, in vivo, in dopaminergic neurons in SNpc of mice and thiol antioxidants, such as ALA terminate this cascade and afford neuroprotection.
-
Caveolae, small invaginations in the plasma membrane, contain caveolins (Cav) that scaffold signaling molecules including the tyrosine kinase Src. We tested the hypothesis that cardiac protection involves a caveolin-dependent mechanism. We used in vitro and in vivo models of ischemia-reperfusion injury, electron microscopy (EM), transgenic mice, and biochemical assays to address this hypothesis. ⋯ Cav-1(-/-) mice exposed to isoflurane showed significant alterations in Src phosphorylation and recruitment of C-terminal Src kinase, a negative regulator of Src, when compared to WT mice. The results indicate that isoflurane modifies cardiac myocyte sarcolemmal membrane structure and composition and that activation of Src and phosphorylation of Cav-1 contribute to cardiac protection. Accordingly, therapies targeted to post-translational modification of Src and Cav-1 may provide a novel approach for such protection.
-
Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin with the release of iron and carbon monoxide. HO-1 is highly inducible by a large number of physical and chemical factors. CoPP is known to be a potent and effective inducer of HO-1 activity in many tissues. ⋯ Transfection with equal amounts of non-Bach1 or non-Nrf2 related control siRNA did not reduce Bach1 or Nrf2 mRNA or protein, confirming the specificity of Bach1- and Nrf2-siRNA in Huh-7 cells. We conclude that the pathway of CoPP-mediated induction of HO-1 involves the repression of Bach1 and up-regulation of the Nrf2 protein by post-transcriptional site(s) of action. Because CoPP, unlike heme, is neither a prooxidant nor a substrate for HO-1, it might be considered as a potential therapeutic agent in situations where up-regulation of HO-1 is desired.