FASEB journal : official publication of the Federation of American Societies for Experimental Biology
-
Comparative Study
Evidence for a functional role of the second C5a receptor C5L2.
During experimental sepsis in rodents after cecal ligation and puncture (CLP), excessive C5a is generated, leading to interactions with C5aR, loss of innate immune functions of neutrophils, and lethality. In the current study, we have analyzed the expression of the second C5a receptor C5L2, the putative "default" or nonsignaling receptor for C5a. Rat C5L2 was cloned, and antibody was developed to C5L2 protein. ⋯ With the use of serum IL-6 as a marker for sepsis, infusion of anti-C5aR dramatically reduced serum IL-6 levels, while anti-C5L2 caused a nearly fourfold increase in IL-6 when compared with CLP controls treated with normal IgG. When normal blood neutrophils were stimulated in vitro with LPS and C5a, the antibodies had similar effects on release of IL-6. These data provide the first evidence for a role for C5L2 in balancing the biological responses to C5a.
-
Multiple mechanisms underlie the surprising willingness of mothers to tolerate genetically different fetal tissues during pregnancy. Chief among these is the choice of HLA-G, a gene with few alleles, rather than the highly polymorphic HLA-A and -B genes, for expression by the placental cells that interface directly with maternal blood and tissues. ⋯ Cytotoxic T lymphocytes either die or reduce production of one of their major coreceptor/activator cell surface molecules, CD8; natural killer cells are immobilized and mononuclear phagocytes are programmed into suppressive modes characterized by high production of anti-inflammatory cytokines. The idea that placental HLA-G proteins facilitate semiallogeneic pregnancy by inhibiting maternal immune responses to foreign (paternal) antigens via these actions on immune cells is now well established, and the postulate that the recombinant counterparts of these proteins may be used as powerful tools for preventing immune rejection of transplanted organs is gaining in popularity.
-
Urocortin (Ucn) is an endogenous cardioprotective agent that protects against the damaging effects of ischemia and reperfusion injury in vitro and in vivo. We have found that the mechanism of action of Ucn involves both acute activation of specific target molecules, and using Affymetrix (Santa Clara, CA) gene chip technology, altered gene expression of different end effector molecules. Here, from our gene chip data, we show that after a 24 h exposure to Ucn, there was a specific increase in mRNA and protein levels of the protein kinase C epsilon (PKCepsilon) isozyme in primary rat cardiomyocytes compared with untreated cells and in the Langendorff perfused ex vivo heart. ⋯ When the inhibitor peptide was present with Ucn, the cardioprotective effect of Ucn was lost. This loss of cardioprotection by Ucn was also seen in whole hearts from PKCepsilon knockout mice. These findings indicate that the cardioprotective effect of Ucn is dependent upon PKCepsilon.
-
Hydrogen sulfide (H2S) is a naturally occurring gas with potent vasodilator activity. Cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS) utilize L-cysteine as substrate to form H2S. Of these two enzymes, cystathionine-gamma-lyase (CSE) is believed to be the key enzyme that forms H2S in the cardiovascular system. ⋯ In this paper, we report the presence of H2S synthesizing enzyme activity and CSE (as determined by mRNA signal) in the pancreas. Also, prophylactic, as well as therapeutic, treatment with the CSE inhibitor, DL-propargylglycine (PAG), significantly reduced the severity of caerulein-induced pancreatitis and associated lung injury, as determined by 1) hyperamylasemia [plasma amylase (U/L) (control, 1204+/-59); prophylactic treatment: placebo, 10635+/-305; PAG, 7904+/-495; therapeutic treatment: placebo, 10427+/-470; PAG, 7811+/-428; P<0.05 PAG c.f. placebo; n=24 animals in each group]; 2) neutrophil sequestration in the pancreas [pancreatic myeloperoxidase oxidase (MPO) activity (fold increase over control) (prophylactic treatment: placebo, 5.78+/-0.63; PAG, 2.97+/-0.39; therapeutic treatment: placebo, 5.48+/-0.52; PAG, 3.03+/-0.47; P<0.05 PAG c.f. placebo; n=24 animals in each group)]; 3) pancreatic acinar cell injury/necrosis; 4) lung MPO activity (fold increase over control) [prophylactic treatment: placebo, 1.99+/-0.16; PAG, 1.34+/-0.14; therapeutic treatment: placebo, 2.03+/-0.12; PAG, 1.41+/-0.97; P<0.05 PAG c.f. placebo; n=24 animals in each group]; and 5) histological evidence of lung injury. These effects of CSE blockade suggest an important proinflammatory role of H2S in regulating the severity of pancreatitis and associated lung injury and raise the possibility that H2S may exert similar activity in other forms of inflammation.
-
The purpose of this study was to develop a novel therapy for Parkinson's disease (PD). We recently reported that dextromethorphan (DM), an active ingredient in a variety of widely used anticough remedies, protected dopaminergic neurons in rat primary mesencephalic neuron-glia cultures against lipopolysaccharide (LPS)-mediated degeneration and provided potent protection for dopaminergic neurons in a MPTP mouse model. The underlying mechanism for the protective effect of DM was attributed to its anti-inflammatory activity through inhibition of microglia activation. ⋯ The anti-inflammatory mechanism of 3-HM was attributed to its inhibition of LPS-induced production of an array of pro-inflammatory and neurotoxic factors, including nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), prostaglandin E2 (PGE2) and reactive oxygen species (ROS). In conclusion, this study showed that 3-HM exerted potent neuroprotection by acting on two different targets: a neurotrophic effect mediated by astroglia and an anti-inflammatory effect mediated by the inhibition of microglial activation. 3-HM thus possesses these two important features necessary for an effective neuroprotective agent. In view of the well-documented very low toxicity of DM and its analogs, this report may provide an important new direction for the development of therapeutic interventions for inflammation-related diseases such as PD.