FASEB journal : official publication of the Federation of American Societies for Experimental Biology
-
It has been shown that nitric oxide (NO), synthesized by the inducible NO synthase (iNOS) expressed in the diaphragm during endotoxemia, participates in the development of muscular contractile failure. The aim of the present study was to investigate whether this deleterious action of NO was related to its effects on cellular oxidative pathways. Rats were inoculated with E. coli lipopolysaccharide (LPS) or sterile saline solution (controls) and studied at 3 and 6 h after inoculation. iNOS protein and activity could be detected in the rat diaphragm as early as 3 h after LPS, with a sustained steady-state concentration of 0.5 microM NO in the muscle associated with increased detection of hydrogen peroxide (H(2)O(2)). ⋯ Simultaneous with the maximal impairment in respiration (6 h after LPS), nitration of mitochondrial proteins (a peroxynitrite footprint) was detected and diaphragmatic force was reduced. Functional mitochondrial abnormalities, nitration of mitochondrial proteins, and the decrease in force were significantly attenuated by administration of the NOS inhibitor L-NMMA. These results show that increased and sustained NO levels lead to a consecutive formation of O(2)(-.) that reacts with NO to form peroxynitrite, which in turn impairs mitochondrial function, which probably contributes to the impairment of muscle contractility. during endotoxemia.
-
Vascular endothelial growth factor (VEGF) is an endothelium-specific secreted protein that induces vasodilation and increases endothelial release of nitric oxide (NO). NO is also reported to modulate leukocyte-endothelium interaction. Therefore, we hypothesized that VEGF might inhibit leukocyte-endothelium interaction via increased release of NO from the vascular endothelium. ⋯ We concluded that VEGF is a potent inhibitor of leukocyte-endothelium interaction, and this effect is specifically correlated to augmentation of NO release from the vascular endothelium.--Scalia, R., Booth, G., Lefer, D. J. Vascular endothelial growth factor attenuates leukocyte-endothelium interaction during acute endothelial dysfunction: essential role of endothelium-derived nitric oxide.
-
General anesthesia markedly impairs normal control of body temperature, reducing the threshold (triggering core temperature) for thermoregulatory vasoconstriction from approximately 37 to approximately 34.5 degrees C. Sweating and active vasodilation thresholds similarly are increased, widening the range of temperatures not triggering regulatory compensations from approximately 0.2 to approximately 4 degrees C. However, once initiated, the gains (slopes of response intensity vs. core temperature curves) and maximum intensities of thermoregulatory responses are nearly normal. ⋯ Core hypothermia provokes thermoregulatory responses including vasoconstriction (above the block level) and shivering. Nonetheless, many patients feel warmer after induction of regional anesthesia, apparently because perceived skin temperature is elevated. The following review will focus on anesthetic-induced impairment of normal thermoregulatory control and the resulting alterations in heat balance.