Neurophysiologie clinique = Clinical neurophysiology
-
We assessed clinical and early electrophysiological characteristics, in particular Generalized Periodic Epileptiform Discharges (GPEDs) patterns, of consecutive patients during a 1-year period, hospitalized in the Intensive Care Unit (ICU) after resuscitation following cardiac arrest (CA). ⋯ Patients presenting suppressed background activity, even when treated by hypothermia, have a high probability of poor outcome. Thorough analysis of EEG patterns might help to identify patients with a better chance of survival.
-
Clinical Trial
Clinical findings and electrodiagnostic testing in 108 consecutive cases of lumbosacral radiculopathy due to herniated disc.
This prospective study aim to examine whether clinical findings and electrodiagnostic testing (EDX) in patients with lumbosacral monoradiculopathy due to herniated disc (HD) differ as a function of root involvement level (L5 vs. S1) and HD zone (paramedian vs. intraforaminal). ⋯ Only some EDX parameters are helpful for the diagnosis of lumbosacral radiculopathy. EMG was abnormal in less than 50% of cases and its abnormalities could be predicted by some clinical findings. However, neurography is useful as a tool for differential diagnosis between radiculopathy and more diffuse disorders of the peripheral nervous system (polyneuropathy, plexopathy).
-
Transcranial electric stimulation elicited muscle motor evoked potentials (TESmMEPs) is one of the best methods for corticospinal tract's function monitoring during spine and spinal cord surgeries. A train of multipulse electric stimulation is required for eliciting TESmMEPs under general anaesthesia. Here, we investigated the best stimulation parameters for eliciting and recording tibialis anterior's TESmMEPs during paediatric scoliosis surgery. ⋯ Most patients had 6 as best NOP (61%) and 3 ms as best ISI (71%). These findings support that a NOP of 6 and an ISI of 3 ms should be preferentially used as optimal stimulation settings for intraoperative tibialis anterior muscle's TESmMEPs eliciting and recording during paediatric scoliosis surgery.
-
To be considered specific for nociception, a cortical region should: (a) have plausible connections with ascending nociceptive pathways; (b) be activated by noxious stimuli; (c) trigger nociceptive sensations if directly stimulated; and (d) tone down nociception when injured. In addition, lesions in this area should have a potential to develop neuropathic pain, as is the case of all lesions in nociceptive pathways. The single cortical region approaching these requirements in humans encompasses the suprasylvian posterior insula and its adjoining medial operculum (referred to as "PIMO" in this review). ⋯ Thus, spinothalamic sub-modalities may be partially segregated in the PIMO, in analogy with the separate representation of dorsal column input from joint, muscle spindle and tactile afferents in S1. Specificity, however, may not wholly depend on ascending 'labelled lines' but also on cortical network properties driven by intrinsic and extrinsic circuitry. Given its particular anatomo-functional properties, thalamic connections, and tight relations with limbic and multisensory cortices, the PIMO region deserves to be considered as a third somatosensory region (S3) devoted to the processing of spinothalamic inputs.