Glia
-
The glial scar, a primarily astrocytic structure bordering the infarct tissue inhibits axonal regeneration after stroke. Neurocan, an axonal extension inhibitory molecule, is up-regulated in the scar region after stroke. Bone marrow stromal cells (BMSCs) reduce the thickness of glial scar wall and facilitate axonal remodeling in the ischemic boundary zone. ⋯ Neurocan gene expression was significantly down-regulated in rats receiving BMSC transplantation (n = 4/group). Primary cultured astrocytes showed similar alterations; BMSC coculture during reoxygenation abolished the up-regulation of neurocan gene in astrocytes undergoing oxygen-glucose deprivation (n = 3/group). Our data suggest that BMSCs promote axonal regeneration by reducing neurocan expression in peri-infarct astrocytes.
-
Comparative Study
Glial TLR4 receptor as new target to treat neuropathic pain: efficacy of a new receptor antagonist in a model of peripheral nerve injury in mice.
Neuropathic pain remains a prevalent clinical problem because it is often poorly responsive to the currently used analgesics, thus it is crucial the identification of new potential targets and drugs. Recent evidence indicated that microglial cells in the spinal cord are critically involved in the development and maintenance of neuropathic pain, with a pivotal role of toll-like receptor 4 (TLR4). Binding of an endogenous ligand to TLR4 might be considered an important step in the regulation of microglia activity in pain facilitation, suggesting that a mechanism aimed to inhibit such a binding could be effective against neuropathic pain. ⋯ The repeated treatment of neuropathic mice with FP-1 (5-10 mg/kg, i.p.) evoked a relief of both thermal hyperalgesia and mechanical allodynia, whereas the administration of the highest dose to TLR4 knockout neuropathic mice revealed that in the absence of TLR4 receptor, the compound lost its efficacy. As consequence of TLR4 binding, the repeated treatment with FP-1 prevented the activation of the transcription factor NF-kB and the TNFalpha overproduction in the spinal cord. Together, our findings support the previous evidence indicative for a contribution of glial TLR4 to the initiation of neuropathic pain, suggest it as potential innovative target to treat this debilitating disease, and propose FP-1 as lead compound for the development of new effective drugs.
-
We have previously shown that activation of the ATP-gated ion channel subtype P2X(4) receptors (P2X(4)Rs) in the spinal cord, the expression of which is upregulated in microglia after nerve injury, is necessary for producing neuropathic pain. The upregulation of P2X(4)Rs in microglia is, therefore, a key process in neuropathic pain, but the mechanism remains unknown. Here, we find a fibronectin/integrin-dependent mechanism in the upregulation of P2X(4)Rs. ⋯ Furthermore, intrathecal administration of fibronectin in normal rats increased the level of P2X(4)R protein in the spinal cord and produced tactile allodynia. Moreover, the fibronectin-induced allodynia was not observed in mice lacking P2X(4)R. Taken together with the results of our previous study showing an increase in the spinal fibronectin level after nerve injury, the present results suggest that the fibronectin/integrin system participates in the upregulation of P2X(4)R expression after nerve injury and subsequent neuropathic pain.
-
Painful neuropathy is one of the most common complications of diabetes, one hallmark of which is tactile allodynia (pain hypersensitivity to innocuous stimulation). The underlying mechanisms of tactile allodynia are, however, poorly understood. Emerging evidence indicates that, following nerve injury, activated microglia in the spinal cord play a crucial role in tactile allodynia. ⋯ We also found that a single administration of U0126 reduced the expression of allodynia. Together, these results suggest that activated dorsal horn microglia may be a crucial component of diabetes-induced tactile allodynia, mediated, in part, by the ERK signaling pathway. Thus, inhibiting microglia activation in the dorsal horn may represent a therapeutic strategy for treating diabetic tactile allodynia.
-
Nitric oxide (NO) leads to neuronal death in ischemia/reperfusion (I/R), including stroke. Here, we examined the NO-induced vulnerability of neurons and lactate production by astrocytes in stroke-prone spontaneously hypertensive rats (SHRSP) in vitro. Neuronal cell death induced by the NO donor sodium nitroprusside (SNP) was significantly increased in SHRSP compared with Wistar kyoto rats (WKY). ⋯ Notably, the SNP-evoked gene expression of PFK2.4 was lower in astrocytes of SHRSP than those of WKY. These results indicated that the neurons and astrocytes of SHRSP differed in responsiveness to SNP from those of WKY. This difference might explain the deficiency of energy and vulnerability to SNP of the neurons of SHRSP.