Glia
-
Oligodendrocyte precursor cell (OPC) proliferation and migration are critical for the development of myelin in the central nervous system (CNS). Previous studies showed that localized expression of the chemokine CXCL1 signals through the receptor CXCR2 to inhibit the migration and enhance the proliferation of spinal cord OPCs during development. Here, we report structural and functional alterations in the adult CNS of Cxcr2-/- mice. ⋯ Biochemical analyses showed decreased levels of myelin basic protein (MBP), proteolipid protein (PLP), and glial fibrillary acidic protein (GFAP). In vitro studies showed reduced numbers of differentiated oligodendrocytes in Cxcr2-/- spinal cord cultures. Together, these findings indicate that the chemokine receptor CXCR2 is important for the development and maintenance of the oligodendrocyte lineage, myelination, and white matter in the vertebrate CNS.
-
We have recently demonstrated that the P2X4 receptor, an ATP-gated cation channel, in spinal microglia is a key molecule that mediates the mechanical allodynia induced by peripheral nerve injury. Although microglial P2X4 receptor expression is increased after peripheral nerve injury, the molecular mechanism(s) underlying its upregulation remains largely unknown. Fibronectin is a member of the extracellular matrix molecules and is actively produced in response to injury and diseases in the CNS. ⋯ Moreover, Western blot examination of the spinal cord from a rat with spinal nerve injury indicated that fibronectin was upregulated on the ipsilateral side. Interestingly, intrathecal injection of ATP-stimulated microglia to the rat lumber spinal cord revealed that microglia cultured on fibronectin-coated dishes was more effective in the induction of allodynia than microglia cultured on control dishes. Taken together, our results suggest that spinal fibronectin is elevated after the peripheral nerve injury and it may be involved in the upregulation of the P2X4 receptor in microglia, which leads to the induction of neuropathic pain.
-
Vestibular schwannomas (VSs) are benign tumors that arise from the Schwann cells (SCs) lining the vestibular nerve. VS cells survive and proliferate far from neurons and axonally derived growth factors. We have previously shown that VSs produce the glial growth factor, neuregulin-1 (NRG1), and its receptors, ErbB2 and ErbB3. ⋯ Furthermore, conditioned medium from VS cell cultures contains NRG1 and stimulates SC proliferation in SC cultures, an effect that is inhibited by anti-NRG1 and HCN. These data suggest an autocrine pathway of VS growth stimulation involving NRG and ErbB receptors. Inhibition of constitutive NRG:ErbB signaling reduces VS cell proliferation in vitro and may have therapeutic potential for patients with VSs.
-
Parathyroid hormone-related peptide (PTHrP) is widely distributed in the rat nervous system, including the peripheral nervous system, where its function is unknown. PTHrP mRNA expression has recently been shown to be significantly elevated following axotomy of sympathetic ganglia, although the role of PTHrP was not investigated. The role of PTHrP in peripheral nerve injury was investigated in this study using the sciatic nerve injury model and dorsal root ganglion (DRG) explant model of nerve regeneration. ⋯ In addition to stimulating migration of Schwann cells along the axonal membrane, PTHrP also stimulates migration on a type 1 collagen matrix. Furthermore, treatment of purified Schwann cell cultures with PTHrP results in the rapid phosphorylation of the cAMP response element protein, CREB. We propose that PTHrP acts by promoting the dedifferentiation of Schwann cells, a critical requirement for successful nerve regeneration and an effect consistent with known PTHrP functions in other cellular differentiation programs.
-
Complement-receptor-3 (CR3/MAC-1), scavenger-receptor-AI/II (SRAI/II), and Fcgamma-receptor (FcgammaR) can mediate myelin phagocytosis in macrophages and microglia. Paradoxically, after injury to CNS axons these receptors are expressed but myelin is not phagocytosed, suggesting that phagocytosis is subject to regulation between efficient and inefficient states. In the present work, we focus on CR3/MAC-1 and SRAI/II-mediated myelin phagocytosis. ⋯ Altogether, our observations suggest that CR3/MAC-1 and SRAI/II-mediated myelin phagocytosis share activation by PI3K, PLCgamma and cPKC. The two differ, however, in that non-PKC DAG-driven molecule(s) inhibit CR3/MAC-1-mediated phagocytosis, whereas nPKC inhibit SRAI/II-mediated phagocytosis. Each of these signaling steps may be targeted for regulating CR3/MAC-1 and/or SRAI/II-mediated phagocytosis between efficient and inefficient states.