Glia
-
Although severe acidosis is an important mediator of brain infarction, recent evidence suggests that mild acidosis may protect ischemic cells. The HSP70 heat shock protein is induced by acidosis in cultured cells and in ischemic brain and protects cells against many types of injury. Therefore, this study determined whether induction of heat shock proteins protects cultured astrocytes against acidosis. ⋯ It is concluded that induction of HSP70 and other heat shock proteins by heat shock protects astrocytes against subsequent lethal heat shock. However, heat shock and acid treatment increase the vulnerability of astrocytes to acidosis 24 h later in spite of the induction of HSP70 heat shock proteins. The finding that heat shock protected astrocytes against acidosis 2 days later may suggest that delayed induction of stress proteins partially protects the astrocytes against damage produced by high concentrations of hydrogen ions.
-
To assess the expression pattern of basic fibroblast growth factor (FGF-2) and one of its receptors (FGFR-1/flg) during autoimmune inflammation of the CNS, FGF-2, and FGFR1/flg peptide and mRNA levels were examined by immunocytochemistry, by in situ hybridisation and by Northern blot analysis in T cell-mediated EAE of the Lewis rat. In naive control animals as well as in animals injected with non-encephalitogenic, PPD-reactive T lymphocytes, FGF-2 immunoreactivity was low and confined to blood vessels and to a few spinal cord neurons. In rats injected with encephalitogenic, MBP-reactive T lymphocytes, however, FGF-2-immunoreactive cells were detected from day 4 after T cell transfer onward, i.e., from the onset of clinical symptoms. ⋯ Paralleling the temporal and spatial expression pattern of FGF-2, FGFR-1/flg immunoreactivity was induced on activated macrophages/microglia but also on reactive astrocytes bordering perivascular inflammatory lesions. In situ hybridisation analysis furthermore showed that macrophages/microglia expressed the FGFR-1/flg mRNA, and that receptor mRNA expression paralleled ligand mRNA expression. Macrophage/microglia-derived FGF-2 could serve two main functions in EAE: 1) regulate microglial activation in an autocrine fashion, and 2) help to target astrocyte-derived insulin-like growth factor-I (IGF-I) to potentially injured oligodendrocytes in demyelination.
-
Comparative Study
Regulation of an oligodendrocyte progenitor cell line by the interleukin-6 family of cytokines.
We report pleiotropic actions of the interleukin-6 family of cytokines on a rat cerebral cortical oligodendrocyte cell line, Central Glia-4 (CG-4). This is a bipotential oligodendrocyte type-2 astrocyte (O-2A) progenitor cell line that can be manipulated in vitro to become either a type-2 astrocyte or to follow a linear sequence of events into becoming a mature oligodendrocyte. Using Northern and Western analyses in conjunction with immunocytochemistry we have demonstrated that ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), and interleukin-6 (IL-6) cause a transient increase in glial fibrillary acidic protein (GFAP) in oligodendrocyte type-2 astrocyte (O-2A) progenitor cells. ⋯ The effect of IL-6 was different in the degree to which the ERGs were up-regulated and in their temporal patterns of expression. These findings suggest that ERGs may be important, at least in part, for determining the extent of functional overlap observed within this cytokine family. Our findings clearly demonstrate differential regulation of oligodendrocyte survival and differentiation by the IL-6 family of cytokines.
-
The jimpy rumpshaker (jprsh) mutation is an amino acid substitution in exon 4 (Ile186-->Thr) of the proteolipid protein (PLP) gene on the X chromosome. Affected mice show moderate hypomyelination of the central nervous system (CNS) with increased numbers of oligodendrocytes in the white matter of the spinal cord, a feature distinguishing them from other PLP mutations such as jp, in which premature cell death occurs with reduced numbers of oligodendrocytes. Myelin sheaths of jprsh immunostain for myelin basic protein (MBP) and DM-20, but very few contain PLP. ⋯ The jprsh oligodendrocyte is, therefore, characterized by a failure to express the markers indicative of the most mature cell; however, it is probably able to achieve a normal period of survival. These data, taken in conjunction with previous results, suggest that the PLP gene has at least two functions; one, probably involving PLP, is concerned with a structural role in normal myelin compaction; the other, perhaps related to DM-20 (or another lower molecular weight proteolipid), is essential for cell survival. The mutation in jprsh at residue 186 suggests that this region, which is common to PLP and DM-20, is not critical for this latter function.
-
We have investigated the expression of transforming growth factor (TGF)-beta 1,-beta 2, and -beta 3 in developing, degenerating, and regenerating rat peripheral nerve by immunohistochemistry and Northern blot analysis. In normal adult sciatic nerve, TGF-beta 1, -beta 2, and -beta 3 are detected in the cytoplasm of Schwann cells, and the levels of TGF-beta 1 and -beta 3 mRNAs are constant during post-natal development. When sciatic nerves are transected to cause axonal degeneration and prevent axonal regeneration, the level of TGF-beta 1 mRNA in the distal nerve-stump increases markedly and remains elevated, whereas the level of TGF-beta 3 mRNA falls modestly and remains depressed. ⋯ Cultured Schwann cells have high levels of TGF-beta 1 mRNA, the amount of which is reduced by forskolin, which mimics the effect of axonal contact. These data demonstrate that Schwann cells express TGF-beta 1, -beta 2, and -beta 3, and that TGF-beta 1 and -beta 3 mRNA predominate over TGF-beta 2 mRNA in peripheral nerve. Axonal contact and forskolin decrease the expression of TGF-beta 1 in Schwann cells.