Molecular and cellular biochemistry
-
Mol. Cell. Biochem. · May 2010
Acute and/or chronic stress models modulate CuZnSOD and MnSOD protein expression in rat liver.
Cellular protection against oxidative stress is afforded by the enzyme superoxide dismutase (SOD). In this study, the protein levels of copper-zinc SOD (CuZnSOD) in the cytosolic and nuclear fraction, manganese SOD (MnSOD) in the mitochondrial, and cytosolic fraction and cytochrome c (cyt c) in the liver of male rats exposed to 2 h of acute immobilization (IM) or Cold stress, 21 days chronic isolation or their combinations (chronic/acute stress) were examined. The serum corticosterone (CORT) level was measured, as an indicator of stress stimuli. ⋯ The data indicate that acute and/or chronic stress models have different degrees of influence on serum CORT and SOD subcellular protein levels. Increased cytosolic CuZnSOD protein level under chronic isolation suggests that state of oxidative stress may also exist under CORT level similar to the basal value. The presence of MnSOD and cyt c in the cytosolic fraction could serve as useful parameters for mitochondrial dysfunction.
-
Mol. Cell. Biochem. · Dec 2009
Alterations in peroxisome proliferator-activated receptor mRNA expression in skeletal muscle after acute and repeated bouts of exercise.
Peroxisome proliferator-activated receptors (PPAR) exist in three different forms, alpha (alpha), beta/delta (beta/delta), or gamma (gamma), all of which are expressed in skeletal muscle and play a critical role in the regulation of oxidative metabolism. The purpose of this investigation was to determine the mRNA expression pattern of the different PPARs and peroxisome proliferator-activated receptor alpha coactivator-1 alpha (PGC-1alpha) in muscles that largely rely on either glycolytic (plantaris) or oxidative (soleus) metabolism. Further, we also examined the alterations in the PPARs mRNA expression after one bout of endurance exercise or after 12 weeks of exercise training in the different muscles. ⋯ With respect to exercise training, only PPARgamma mRNA expression increased in the soleus muscle, while PPARbeta/delta and gamma mRNA levels increased in the plantaris muscle. Minimal changes were detected in any of the PPARs with one bout of exercise training. These results suggest that PPARgamma mRNA levels are the lowest in skeletal muscle among all of the PPARs and PPARgamma mRNA is the most responsive to changes in physical activity levels.
-
Mol. Cell. Biochem. · Dec 2009
Comparative StudyMatrix imbalance by inducing expression of metalloproteinase and oxidative stress in cochlea of hyperhomocysteinemic mice.
Clinical study reports hearing loss in patients with low folic acid (FA) and elevated homocysteine (Hcy). We hypothesize that elevated Hcy induces imbalance in matrix turnover and oxidative stress in cochlea. Cystathione beta-synthase heterozygous knockout mice were used as model for hyperhomocysteinemia. ⋯ Cochlea of CBS mice showed following structural changes; (1) detachment of tectorial membrane lying on hair cells (2) thinner s. vascularis (3) large fibroblast in spiral ligament. Hcy induced higher protein nitrotyrosination and cytosolic NADPHoxidase subunit p22(phox) in cochlea. It is thus suggested that Hcy induced matrix imbalance, structural changes and oxidative stress in cochlea.
-
Mol. Cell. Biochem. · Oct 2009
Mechanism of attenuation by beta-hydroxy-beta-methylbutyrate of muscle protein degradation induced by lipopolysaccharide.
The mechanism of the effect of beta-hydroxy-beta-methylbutyrate (HMB) on protein degradation induced by lipopolysaccharide (LPS) has been evaluated in murine myotubes. HMB (50 muM) completely attenuated total protein degradation induced by LPS (1-100 ng/ml), formation of reactive oxygen species (ROS) and activation of caspase-3/-8. Specific inhibitors of caspase-3/-8 completely attenuated ROS production, total protein degradation and the LPS-induced autophosphorylation of dsRNA-dependent protein kinase (PKR). ⋯ The link between PKR activation and ROS production was mediated through p38 mitogen-activated protein kinase (MAPK), which was activated by LPS in myotubes transfected with wild-type PKR, but not PKRDelta6. Both ROS production and protein degradation induced by LPS were completely attenuated by SB203580, a specific inhibitor of p38MAPK. This suggests that LPS induces protein degradation through a signalling cascade involving activation of caspase-3/-8, activation of PKR and production of ROS through p38MAPK, and that this process is attenuated by HMB.
-
Mol. Cell. Biochem. · Mar 2009
Upregulation of myocardial syntaxin1A is associated with an early stage of polymicrobial sepsis.
This study was designed to test whether increased sympathetic stimulation during polymicrobial sepsis modulates the profile of the syntaxin1A and norepinephrine transporter (NET) in the heart. Sepsis of mild and severe intensity was induced in male Sprague-Dawley rats (275-350 g) using the cecal inoculum (CI) and cecal ligation and puncture (CLP) methods, respectively. The heart samples were isolated from sham, 1, 3, and 7 day post-sepsis in the CI model and at 2 and 20 h post-sepsis in the CLP model. ⋯ In the CLP model of severe sepsis, the myocardial syntaxin1A mRNA protein expressions significantly increased at 2 h post-CLP, but remained unchanged at 20 h post-CLP compared to the sham group. In contrast, the myocardial expressions of NET mRNA and protein significantly decreased at both 2 and 20 h post-CLP compared to the sham group. It appears that during severe sepsis (CLP model), both the upregulation of syntaxin1A and the downregulation of NET contribute to increased concentrations of NE during the early and late stages of sepsis.