Synapse
-
Comparative Study
In heterozygous GDNF knockout mice the response of striatal dopaminergic system to acute morphine is altered.
Glial cell line-derived neurotrophic factor (GDNF) regulates striatal dopaminergic neurons. To study whether reduced endogenous GDNF affect morphine's effects on striatal dopamine transmission, we estimated extracellular concentrations of dopamine and its metabolites by microdialysis in vivo and tissue concentrations post mortem in mice lacking one GDNF allele (GDNF+/- mice). In the wild-type mice, acute morphine (5 and 10 mg/kg s.c.) increased accumbal dopamine output dose-dependently (maximally by 30 and 80%, respectively). ⋯ The binding of [(3)H]DAMGO to striatal membrane homogenates was similar between the genotypes. However, morphine induced antinociception in the GDNF+/- mice at a smaller dose than in the controls. The finding that reduced GDNF level alters the effects of morphine on striatal dopamine and our previous findings of elevated extracellular striatal dopamine concentrations and FosB/DeltaFosB expression in the GDNF+/- mice show the importance of GDNF in the regulation of striatal dopaminergic system.
-
Quinolinate (QUIN) neurotoxicity has been attributed to degenerative events in nerve tissue produced by sustained activation of N-methyl-D-aspartate receptor (NMDAr) and oxidative stress. We have recently described the protective effects that selenium (Se), an antioxidant, produces on different markers of QUIN-induced neurotoxicity (Santamaría et al., 2003, J Neurochem 86:479-488.). However, the mechanisms by which Se exerts its protective actions remain unclear. ⋯ Caspase-3-like activation and DNA fragmentation produced by QUIN were also inhibited by Se. Striatal GPx activity was stimulated by Se at 2 and 6 h, but not at 24 h postlesion. Altogether, these data suggest that the protective effects exerted by Se on QUIN-induced neurotoxicity are partially mediated by the inhibition of proapoptotic events underlying IkappaB-alpha degradation, NF-kappaB nuclear translocation, and caspase-3-like activation in the rat striatum, probably involving the early activation of GPx.
-
This study investigates whether bradykinin (BK) B(2) receptor binding sites are increased in the brain and thoracic spinal cord of streptozotocin (STZ)-diabetic rats at 2, 7, and 21 days posttreatment by in vitro autoradiography with the radioligand [(125)I]HPP-Hoe 140. In control and diabetic rats, specific binding sites for B(2) receptors were detected in the brain and in various laminae of the spinal cord, predominantly in superficial laminae (K(d)=34 pM). In diabetic rats, B(2) receptor densities were significantly increased in lamina l of the dorsal horn (+35% at 7 and 21 days), spinal trigeminal nucleus (+70% at 7 and 21 days) and nucleus tractus solitarius (+100% at 2 and 7 days). ⋯ While des-Arg(10)-Hoe 140 was three orders of magnitude less potent than Hoe 140, B(1) receptor agonist (des-Arg(9)-BK) and antagonist (AcLys[D-betaNal(7),Ile(8)]des-Arg(9)-BK, R-715) did not affect [(125)I]-HPP-Hoe 140 binding at 1 microM concentration. Data suggest a very discrete and temporal increase of B(2) receptor density (without affinity changes) in the spinal cord and hindbrain of STZ-diabetic rats. This contrasts with the early induction and over-expression of B(1) receptors reported in the brain and spinal cord of STZ-diabetic rats.
-
Methamphetamine (METH) is a psychostimulant that induces excessive release of dopamine (DA) in the striatum. In this study we have assessed the role of DA D1 and D2 receptors (D1R and D2R) on striatal METH-induced apoptosis and depletion of DA-terminal markers. Male mice were given one i.p. injection of METH (30 mg/kg). ⋯ However, pretreatment with either raclopride or SCH-23390 did not prevent METH-induced hyperthermia in mice. These data demonstrate that the induction by METH of both striatal apoptosis and DA-terminal damage requires the activity of the postsynaptic DA receptors in the mouse brain. Moreover, since blockade of either receptor subtype protected from METH, the activity of both DA receptor subtypes is required for the induction of toxicity by METH in the striatum.
-
A role for kinin B1 receptors was suggested in the spinal cord and peripheral organs of streptozotocin (STZ)-diabetic rats. The present study aims at determining whether B1 receptors are also induced and over-expressed in the brain of STZ-rats at 2, 7, and 21 days post-treatment. This was addressed by in situ hybridization using the [35S]-UTPalphaS-labeled riboprobe and by in vitro autoradiography with the radioligand [125I]-HPP-des-Arg10-Hoe 140. ⋯ In diabetic rats, B1 receptor binding sites were significantly increased in hippocampus, amygdala, temporal/parietal, and perhinal/piriform cortices (+ 55 to + 165 %) at 7 days only. Results highlight an early but transient and reversible up-regulation of B1 receptors in specific brain regions of STZ-diabetic rats. This may offer the advantage of reducing putative central side effects with B1 receptor antagonists if used for the treatment of diabetic complications in the periphery.