Synapse
-
The impact of theta patterning of the stimulation on the kindling effects of pentylenetetrazol (PTZ) was studied in rat hippocampus area CA1 in vitro. A potential involvement of adenosine A1 receptors was also examined. Primed-bursts stimulation (PBs) and theta pulse stimulation (TPS) were used as patterned activities. ⋯ When A1 receptor antagonist CPX was applied before PBs, both fEPSP LTP and PS LTP were elicited. PS LTP was selectively depressed by TPS (applied at 60 min after LTP induction) exclusively when A1 receptors were blocked, while TPS failed to depress PS LTP in untreated PBs-exposed slices. These findings suggest that seizing entails lasting changes in hippocampus area CA1 so that LTP induction by PBs is masked due to intensive adenosine release which in turn prevents TPS to induce PS LTD in epileptic CA1 network.
-
Agmatine, a metabolite of L-arginine, is considered as a novel putative neurotransmitter. It has been detected in axon terminals that synapse with pyramidal cells in the hippocampus, a brain region that is critically involved in spatial learning and memory. However, the role of agmatine in learning and memory is poorly understood. ⋯ In the present study, quantitative immunogold-labeling and electron-microscopical techniques were used to analyze the levels of agmatine in CA1 stratum radiatum (SR) terminals (n = 600) of male Sprague-Dawley rats that had been trained to find a hidden escape platform in the water maze (WM) task or forced to swim (SW) in the pool with no platform presented. Agmatine levels were significantly increased by ∼85% in the synaptic terminals of SR of trained WM group compared with the SW control group (all P < 0.001). These results, for the first time, demonstrate spatial learning-induced elevation in agmatine levels at synapses in the hippocampus and provide evidence of its participation in learning and memory processing as a novel neurotransmitter.
-
CART (Cocaine- and amphetamine-regulated transcript) peptide has been implicated in playing a modulatory role in reward and reinforcement. Previously, our laboratory demonstrated that injections of CART peptide (CART 55-102) into the nucleus accumbens (NAc) attenuated both cocaine- and dopamine-induced increases in locomotor activity (LMA), and attenuated cocaine reward as well. In this study, the effects of CART peptide on LMA induced by dopamine receptor agonists were evaluated after intraaccumbal injections in male, Sprague-Dawley rats. ⋯ The combination of SKF-81,297 and 7-OH-DPAT induced greater LMA than SKF-81,297 alone. Coadministration of CART peptide along with the D1 and D2 agonists reduced LMA. These results strongly suggest that CART peptide reduces the effects of psychostimulants by modulating the simultaneous activation of both D1 and D2 dopamine receptors rather than by affecting the action of any individual dopamine receptor.
-
High-frequency stimulation (HFS) of the subthalamic nucleus (STN) alleviates the cardinal symptoms of Parkinson's disease, but the mechanisms underlying these clinical results remain to be clarified. The HFS of STN is associated with the release of dopamine (DA) in the striatum. This study examines possible mechanisms by which HFS-STN release DA. ⋯ The microinjection of muscimol depresses spontaneous release of DA, without changes in DOPAC. The kainic acid lesion of the globus pallidus (GP) and the substantia nigra pars reticulata (SNr), ipsilateral to dialyzed striatum, did not modify the release of DA-DOPAC. These data provide evidence that the STN has a tonic action on the substantia nigra pars compacta (SNc), and the release of striatal DA by HFS-STN may be due to activation of the STN acting directly on SNc neurons.
-
This study was carried out to determine the roles of dopamine D1 and D2 receptors on the up-regulation of α(2)/δ subunit of voltage-gated Ca(2+) channels (VGCCs) induced by methamphetamine (METH). In the conditioned place preference paradigm, METH-induced place preference suppressed with gabapentin, an antagonist for α(2)/δ subunit. Under these conditions, the increase in α(2)/δ subunit expression was found in the frontal cortex and limbic forebrain. ⋯ The expression of α(2)/δ subunit protein and its mRNA was significantly enhanced in the METH-treated cortical neurons. These increases in protein and mRNA of α(2)/δ subunit were completely abolished by SCH23390 and sulpiride with simultaneous exposure to METH. These findings indicate that up-regulation of α(2)/δ subunit is regulated through the activation of dopamine D1 and D2 receptors during METH treatment.