Clinical microbiology reviews
-
Clin. Microbiol. Rev. · Oct 2006
ReviewEmerging respiratory viruses: challenges and vaccine strategies.
The current threat of avian influenza to the human population, the potential for the reemergence of severe acute respiratory syndrome (SARS)-associated coronavirus, and the identification of multiple novel respiratory viruses underline the necessity for the development of therapeutic and preventive strategies to combat viral infection. Vaccine development is a key component in the prevention of widespread viral infection and in the reduction of morbidity and mortality associated with many viral infections. In this review we describe the different approaches currently being evaluated in the development of vaccines against SARS-associated coronavirus and avian influenza viruses and also highlight the many obstacles encountered in the development of these vaccines. Lessons learned from current vaccine studies, coupled with our increasing knowledge of the host and viral factors involved in viral pathogenesis, will help to increase the speed with which efficacious vaccines targeting newly emerging viral pathogens can be developed.
-
Burns are one of the most common and devastating forms of trauma. Patients with serious thermal injury require immediate specialized care in order to minimize morbidity and mortality. Significant thermal injuries induce a state of immunosuppression that predisposes burn patients to infectious complications. ⋯ Burn patients are also at risk for developing sepsis secondary to pneumonia, catheter-related infections, and suppurative thrombophlebitis. The introduction of silver-impregnated devices (e.g., central lines and Foley urinary catheters) may reduce the incidence of nosocomial infections due to prolonged placement of these devices. Improved outcomes for severely burned patients have been attributed to medical advances in fluid resuscitation, nutritional support, pulmonary and burn wound care, and infection control practices.
-
Clin. Microbiol. Rev. · Oct 2005
ReviewVaccines for tuberculosis: novel concepts and recent progress.
Three-quarters of a century after the introduction of Mycobacterium bovis BCG, the first tuberculosis vaccine, new vaccines for tuberculosis are finally entering clinical trials. This breakthrough is based not only on advances in proteomics and genomics which have made the construction of new vaccines possible, but also on a greatly expanded knowledge of the immunology of tuberculosis. Here we review our current understanding of how Mycobacterium tuberculosis subverts or survives the host's immune response to cause disease and why the current vaccination strategy, which relies on BCG, is only partially successful in countering the pathogen. This provides a background for describing the new generation of vaccines designed to supplement or replace the current vaccine and the different approaches they take to stimulate immunity against M. tuberculosis.
-
Antimicrobial stewardship programs in hospitals seek to optimize antimicrobial prescribing in order to improve individual patient care as well as reduce hospital costs and slow the spread of antimicrobial resistance. With antimicrobial resistance on the rise worldwide and few new agents in development, antimicrobial stewardship programs are more important than ever in ensuring the continued efficacy of available antimicrobials. The design of antimicrobial management programs should be based on the best current understanding of the relationship between antimicrobial use and resistance. ⋯ Clinical computer systems can aid in the implementation of each of these strategies, especially as expert systems able to provide patient-specific data and suggestions at the point of care. Antibiotic rotation strategies control the prescribing process by scheduled changes of antimicrobial classes used for empirical therapy. When instituting an antimicrobial stewardship program, a hospital should tailor its choice of strategies to its needs and available resources.
-
Humans are infected by four recognized species of malaria parasites. The last of these to be recognized and described is Plasmodium ovale. Like the other malaria parasites of primates, this parasite is only transmitted via the bites of infected Anopheles mosquitoes. ⋯ The development of techniques for the long-term frozen preservation of malaria parasites has allowed the development diagnostic reference standards for P. ovale. Infections in chimpanzees are used to provide reference and diagnostic material for serologic and molecular studies because this parasite has not been shown to develop in other nonhuman primates, nor has it adapted to in vitro culture. There is no evidence to suggest that P. ovale is closely related phylogenetically to any other of the primate malaria parasites that have been examined.