Neuron
-
Neuropathic pain is a chronic debilitating disease characterized by mechanical allodynia and spontaneous pain. Because symptoms are often unresponsive to conventional methods of pain treatment, new therapeutic approaches are essential. Here, we describe a strategy that not only ameliorates symptoms of neuropathic pain but is also potentially disease modifying. ⋯ Underlying this improvement is a remarkable integration of the MGE transplants into the host spinal cord circuitry, in which the transplanted cells make functional connections with both primary afferent and spinal cord neurons. By contrast, MGE transplants were not effective against inflammatory pain. Our findings suggest that MGE-derived GABAergic interneurons overcome the spinal cord hyperexcitability that is a hallmark of nerve injury-induced neuropathic pain.
-
The mammalian circadian system, which is comprised of multiple cellular clocks located in the organs and tissues, orchestrates their regulation in a hierarchical manner throughout the 24 hr of the day. At the top of the hierarchy are the suprachiasmatic nuclei, which synchronize subordinate organ and tissue clocks using electrical, endocrine, and metabolic signaling pathways that impact the molecular mechanisms of cellular clocks. ⋯ Disturbances in the communication between the plethora of body clocks can desynchronize the circadian system, which is believed to contribute to the development of diseases such as obesity and neuropsychiatric disorders. This review will highlight the relationship between clocks and metabolism, and describe how cues such as light, food, and reward mediate entrainment of the circadian system.
-
After nerve injury maladaptive changes can occur in injured sensory neurons and along the entire nociceptive pathway within the CNS, which may lead to spontaneous pain or pain hypersensitivity. The resulting neuropathic pain syndromes present as a complex combination of negative and positive symptoms, which vary enormously from individual to individual. This variation depends on a diversity of underlying pathophysiological changes resulting from the convergence of etiological, genotypic, and environmental factors. The pain phenotype can serve therefore, as a window on underlying pathophysiological neural mechanisms and as a guide for developing personalized pain medicine.
-
Epigenetic processes, such as histone modifications and DNA methylation, have been associated with many neural functions including synaptic plasticity, learning, and memory. Here, we critically examine emerging evidence linking epigenetic mechanisms to the development or maintenance of chronic pain states. Although in its infancy, research in this area potentially unifies several pathophysiological processes underpinning abnormal pain processing and opens up a different avenue for the development of novel analgesics.
-
Most functional plasticity studies in the cortex have focused on layers (L) II/III and IV, whereas relatively little is known of LV. Structural measurements of dendritic spines in vivo suggest some specialization among LV cell subtypes. We therefore studied experience-dependent plasticity in the barrel cortex using intracellular recordings to distinguish regular spiking (RS) and intrinsic bursting (IB) subtypes. ⋯ Similar RS/IB differences were found in the LII/III to V connections in brain slices. Modeling studies showed that subthreshold changes predicted the suprathreshold changes. These studies demonstrate the major functional partition of plasticity within a single cortical layer and reveal the LII/III to LV connection as a major excitatory locus of cortical plasticity.