Neuron
-
Comparative Study
Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala.
A deficient extinction of memory is particularly important in the regime of fear, where it limits the beneficial outcomes of treatments of anxiety disorders. Fear extinction is thought to involve inhibitory influences of the prefrontal cortex on the amygdala, although the detailed synaptic mechanisms remain unknown. ⋯ Cellularly, NPS increases glutamatergic transmission to intercalated GABAergic neurons in the amygdala via presynaptic NPS receptors on connected principal neurons. These results identify mechanisms of NPS in the brain, a key role of intercalated neurons in the amygdala for fear extinction, and a potential pharmacological avenue for treating anxiety disorders.
-
Emotion plays a critical role in many contemporary accounts of decision making, but exactly what underlies its influence and how this is mediated in the brain remain far from clear. Here, we review behavioral studies that suggest that Pavlovian processes can exert an important influence over choice and may account for many effects that have traditionally been attributed to emotion. ⋯ Corresponding neuroscientific data from both animals and humans implicate a central role for the amygdala through interactions with other brain areas. This yields a neurobiological account of emotion in which it may operate, often covertly, to optimize rather than corrupt economic choice.
-
The level of synchronization in distributed systems is often controlled by the strength of the interactions between individual elements. In brain circuits the connection strengths between neurons are modified under the influence of spike-timing-dependent plasticity (STDP) rules. ⋯ The presence of these opposing forces promotes the self-organization of spontaneously active neuronal networks to a state at the border between randomness and synchrony. The decoupling force of STDP may be engaged by the synchronous bursts occurring in the hippocampus during slow-wave sleep, leading to the selective erasure of information from hippocampal circuits as memories are established in neocortical areas.
-
Tactile information is actively acquired and processed in the brain through concerted interactions between movement and sensation. Somatosensory input is often the result of self-generated movement during the active touch of objects, and conversely, sensory information is used to refine motor control. There must therefore be important interactions between sensory and motor pathways, which we chose to investigate in the mouse whisker sensorimotor system. ⋯ Single brief whisker deflections evoked highly distributed depolarizing cortical sensory responses, which began in the primary somatosensory barrel cortex and subsequently excited the whisker motor cortex. The spread of sensory information to motor cortex was dynamically regulated by behavior and correlated with the generation of sensory-evoked whisker movement. Sensory processing in motor cortex may therefore contribute significantly to active tactile sensory perception.
-
Maps of sensory receptor epithelia and computed features of the sensory environment are common elements of auditory, visual, and somatic sensory representations from the periphery to the cerebral cortex. Maps enhance the understanding of normal neural organization and its modification by pathology and experience. They underlie the derivation of the computational principles that govern sensory processing and the generation of perception. ⋯ Some puzzles of auditory cortical map organization are that few complete receptor maps are available and that even fewer computational maps are known beyond primary cortical areas. Neuroanatomical evidence suggests equally organized connectional patterns throughout the cortical hierarchy that might underlie map stability. Here, we consider the implications of auditory cortical map organization and its plasticity and evaluate the complementary role of maps in representation and computation from an auditory perspective.