Neuron
-
Early olfactory axons follow a specific pathway to reach the developing telencephalon. We observed that a subpopulation of these axons, the pioneer olfactory axons, penetrate into the ventricular zone of a highly restricted region of the telencephalon at E13 and E14. At E15, this same telencephalic region evaginates to form the olfactory bulb. ⋯ In addition, twice as many cells have exited the mitotic cycle in the olfactory bulb primordium versus the adjacent cortex. These findings suggest that pioneer olfactory axons play a role in the induction of the olfactory bulb by selectively modulating cell cycle kinetics in the olfactory bulb primordium. Afferent axons may influence target morphogenesis by modulating target precursor cell proliferation in other developing neural structures.
-
During leech embryogenesis, interactions between homologous neurons in neighboring segments lead to the selective retraction of longitudinal axonal projections by midbody AP and AE neurons, which maintain lateral axonal projections to the periphery. Results of experiments reported here show that disconnecting the lateral projections from the periphery rescues the projections normally fated to retract. We propose that these neurons normally progress through two states during early development, one in which they are insensitive to interactions with their homologs (state A) and a second in which they are sensitive (state B). Establishment of lateral connections with their targets triggers the switch from state A to state B; cutting these projections puts neurons back to state A.