Neuron
-
Neuropathic pain is caused by long-term modifications of neuronal function in the peripheral nervous system, the spinal cord, and supraspinal areas. Although functional changes in the forebrain are thought to contribute to the development of persistent pain, their significance and precise subcellular nature remain unexplored. ⋯ Specific activation of the serotonin receptor type 7 (5-HT7R) alleviated the lesion-induced pathology by increasing HCN channel function, restoring normal dendritic integration, and reducing mechanical pain hypersensitivity in nerve-injured animals in vivo. Thus, serotoninergic neuromodulation at the forebrain level can reverse the dendritic dysfunction induced by neuropathic pain and may represent a potential therapeutical target.
-
Stroke remains a significant problem despite decades of work on neuroprotective strategies. NMDA receptor (NMDAR) antagonists are neuroprotective in preclinical models, but have been clinically unsuccessful, in part due to side effects. Here we describe a prototypical GluN2B-selective antagonist with an IC50 value that is 10-fold more potent at acidic pH 6.9 associated with ischemic tissue compared to pH 7.6, a value close to the pH in healthy brain tissue. ⋯ We have determined the mechanism underlying pH-dependent inhibition and demonstrate the utility of this approach in vivo. We also identify dicarboxylate dimers as a novel proton sensor in proteins. These results provide insight into the molecular basis of pH-dependent neuroprotective NMDAR block, which could be beneficial in a wide range of neurological insults associated with tissue acidification.
-
The gate control theory of pain proposes that inhibitory neurons of the spinal dorsal horn exert critical control over the relay of nociceptive signals to higher brain areas. Here we investigated how the glycinergic subpopulation of these neurons contributes to modality-specific pain and itch processing. ⋯ Conversely, local pharmacogenetic activation of the same neurons alleviated neuropathic hyperalgesia and chloroquine- and histamine-induced itch. These results establish glycinergic neurons of the spinal dorsal horn as key elements of an inhibitory pain and itch control circuit.
-
While gustatory sensing of the five primary flavors (sweet, salty, sour, bitter, and savory) has been extensively studied, pathways that detect non-canonical taste stimuli remain relatively unexplored. In particular, while reactive oxygen species cause generalized damage to biological systems, no gustatory mechanism to prevent ingestion of such material has been identified in any organism. We observed that light inhibits C. elegans feeding and used light as a tool to uncover molecular and neural mechanisms for gustation. ⋯ The gustatory receptor family members LITE-1 and GUR-3 are required for the inhibition of feeding by light and hydrogen peroxide. The I2 pharyngeal neurons increase calcium in response to light and hydrogen peroxide, and these responses require GUR-3 and a conserved antioxidant enzyme peroxiredoxin PRDX-2. Our results demonstrate a gustatory mechanism that mediates the detection and blocks ingestion of a non-canonical taste stimulus, hydrogen peroxide.
-
Chronic pain can lead to anxiety and anxiety can enhance the sensation of pain. Unfortunately, little is known about the synaptic mechanisms that mediate these re-enforcing interactions. Here we characterized two forms of long-term potentiation (LTP) in the anterior cingulate cortex (ACC); a presynaptic form (pre-LTP) that requires kainate receptors and a postsynaptic form (post-LTP) that requires N-methyl-D-aspartate receptors. ⋯ Interestingly, chronic pain and anxiety both result in selective occlusion of pre-LTP. Significantly, microinjection of the HCN blocker ZD7288 into the ACC in vivo produces both anxiolytic and analgesic effects. Our results provide a mechanism by which two forms of LTP in the ACC may converge to mediate the interaction between anxiety and chronic pain.