Journal of neurotrauma
-
Journal of neurotrauma · Feb 2006
Mechanisms and consequences of neuronal stretch injury in vitro differ with the model of trauma.
The deformation to the brain that occurs during traumatic brain injury (TBI) results in a complex strain distribution throughout the brain tissue. Recently, many in vitro models of neuronal injury have been developed to simplify the mechanics which occur during TBI. We hypothesized that the type of mechanical insult imparted onto neurons would significantly alter both the mechanism and severity of the neuronal response to injury. ⋯ Despite the large ([Ca2+]i) transients, neither injury profile resulted in death within 24 h of injury. Interestingly, though, uniaxially stretched neurons exhibited enhanced [Ca+2]i influx following NMDA stimulation 24 h after trauma, compared to both control and biaxially stretched neurons. These data point out that the type of mechanical insult will influence the acute mechanisms of injury in vitro, can cause differences in the response to potential secondary excitotoxic injury mechanisms, and emphasizes the need to further study how these mechanical conditions can separately affect cell fate following mechanical injury.
-
Journal of neurotrauma · Feb 2006
Neuroprotective effects of selective group II mGluR activation in brain trauma and traumatic neuronal injury.
The effects of group II mGluR activation by selective agonist (-)-2-oxa-4-aminobicyclo[3.1. 0]hexane-4,6-dicarboxylate (LY379268) were examined in a mouse model of controlled cortical impact (CCI)-induced brain injury and in primary neuronal/glial and neuronal cultures subjected to mechanical trauma. Systemic administration of LY379268 to mice at 30 min after CCI significantly improved both motor and cognitive recovery as compared with vehicle-treated control animals. ⋯ The neuroprotective effect of LY379268 in vitro was abolished by co-administration of the mGluR2/3 antagonist (s)-alpha-ethylglutamic acid (EGLU); however, co-application of selective mGluR3 antagonist beta-N-acetyl-aspartyl-glutamate (NAAG) had no significant influence in the same system. Together, these findings demonstrate the neuroprotective activity of group II mGluR activation and underscore the role of the mGluR2 subtype for this effect.