Journal of neurotrauma
-
Journal of neurotrauma · Oct 2008
Computer-aided assessment of head computed tomography (CT) studies in patients with suspected traumatic brain injury.
In this study, we sought to determine the accuracy of a computer algorithm that automatically assesses head computed tomography (CT) studies in patients with suspected traumatic brain injury (TBI) for features of intracranial hemorrhage and mass effect, employing a neuroradiologist's interpretation as the gold standard. To this end, we designed a suite of computer algorithms that evaluates in a fully automated fashion the presence of intracranial blood and/or mass effect based on the following CT findings: (1) presence or absence of a subdural or epidural hematoma, (2) presence or absence of subarachnoid hemorrhage, (3) presence or absence of an intraparenchymal hematoma, (4) presence or absence of clinically significant midline shift (>or=5 mm), and (5) normal, partly effaced, or completely effaced basal cisterns. The algorithm displays abnormal findings as color overlays on the original head CT images, and calculates the volume of each type of blood collection, the midline shift, and the volume of the basal cisterns, based on the above-described features. ⋯ The software was excellent at detecting the presence of mass effect and intracranial hemorrhage, but showed some disagreements with the neuroradiologist in quantifying the degree of mass effect and characterizing the type of intracranial hemorrhage. In summary, we have developed a fully automated computer algorithm that demonstrated excellent sensitivity for acute intracranial hemorrhage and clinically significant midline shift, while maintaining intermediate specificity. Further studies are required to evaluate the potential favorable impact of this software on facilitating workflow and improving diagnostic accuracy when used as a screening aid by physicians with different levels of experience.
-
Journal of neurotrauma · Oct 2008
CYP4Fs expression in rat brain correlates with changes in LTB4 levels after traumatic brain injury.
Cytochrome P450 (CYP) 4Fs constitute a subgroup of the cytochrome P450 superfamily and are involved in cellular protection and metabolism of numerous molecules, including drugs, toxins, and eicosanoids. CYP4Fs are widely distributed in rat brain with each isoform having a unique distribution pattern throughout different brain regions. The present study shows that traumatic brain injury (TBI) triggers inflammation and elicits changes in mRNA expression of CYP4Fs in the frontal and occipital lobes and the hippocampus. ⋯ These changes in CYP4F levels inversely correlate with levels of leukotriene B4 (LTB4) levels in the brain following injury at the same time points. TBI also causes changes in CYP4F protein expression and localization around the injury site. CYP4F1 and CYP4F6 immunoreactivity increases in surrounding astrocytes, while CYP4F4 immunoreactivity shifts from endothelia of cerebral vessels to astrocytes.
-
Journal of neurotrauma · Oct 2008
Traumatic brain injury research priorities: the Conemaugh International Brain Injury Symposium.
In 2005, an international symposium was convened with over 100 neuroscientists from 13 countries and major research centers to review current research in traumatic brain injury (TBI) and develop a consensus document on research issues and priorities. Four levels of TBI research were the focus of the discussion: basic science, acute care, post-acute neurorehabilitation, and improving quality of life (QOL). Each working group or committee was charged with reviewing current research, discussion and prioritizing future research directions, identifying critical issues that impede research in brain injury, and establishing a research agenda that will drive research over the next five years, leading to significantly improved outcomes and QOL for individuals suffering brain injuries. ⋯ The major purpose of the symposium was to provide recommendations to the U. S. Congress on a priority basis for research, treatment, and training in TBI over the next five years.
-
Journal of neurotrauma · Oct 2008
Segmental neuropathic pain does not develop in male rats with complete spinal transections.
In a previous study using male rats, a correlation was found between the development of "at-level" allodynia in T6-7 dermatomes following severe T8 spinal contusion injury and the sparing of some myelinated axons within the core of the lesion epicenter. To further test our hypothesis that this sparing is important for the expression of allodynia and the supraspinal plasticity that ensues, an injury that severs all axons (i.e., a complete spinal cord transection) was made in 15 male rats. Behavioral assessments were done at level throughout the 30-day recovery period followed by terminal electrophysiological recordings (urethane anesthesia) from single medullary reticular formation (MRF) neurons receiving convergent nociceptive inputs from receptive fields above, at, and below the lesion level. ⋯ However, the terminal recording (206 MRF neurons) data resembled those obtained previously post-contusion. That is, there was evidence of neuronal hyper-excitability (relative to previous data from intact controls) to high- and low-threshold mechanical stimulation for "at-level" (dorsal trunk) and "above-level" (eyelids and face) cutaneous territories. These results, when combined with prior data on intact controls and severe/moderate contusions, indicate that (1) an anatomically incomplete injury (some lesion epicenter axonal sparing) following severe contusion is likely important for the development of allodynia and (2) the neuronal hyper-excitability at the level of the medulla is likely involved in nociceptive processes that are not directly related to the conscious expression of pain-like avoidance behaviors that are being used as evidence of allodynia.