Journal of neurotrauma
-
Journal of neurotrauma · Jun 2008
Multicenter StudyProgression of traumatic intracerebral hemorrhage: a prospective observational study.
ABSTRACT Preliminary evidence has shown that intracerebral hemorrhages, either spontaneous (sICH) or traumatic (tICH) often expand over time. An association between hemorrhage expansion and clinical outcomes has been described for sICH. The intent of this prospective, observational study was to characterize the temporal profile of hemorrhage progression, as measured by serial computed tomography (CT) scanning, with the aim of better understanding the natural course of hemorrhage progression in tICH. ⋯ This study demonstrates that tICH expansion between the baseline and 24-h CT scans occurred in approximately half of the subjects. The earlier after injury that the initial CT scan is obtained, the greater is the likelihood that the hematoma will expand on subsequent scans. The time frame during which hemorrhagic expansion occurs provides an opportunity for early intervention to limit a process with adverse prognostic implications.
-
Journal of neurotrauma · Jun 2008
Early and sustained alterations in cerebral metabolism after traumatic brain injury in immature rats.
Although studies have shown alterations in cerebral metabolism after traumatic brain injury (TBI), clinical data in the developing brain is limited. We hypothesized that post-traumatic metabolic changes occur early (<24 h) and persist for up to 1 week. Immature rats underwent TBI to the left parietal cortex. ⋯ The NAA/Lac ratio was decreased ( approximately 15-20%) at all times (4 h, 24 h, 7 days) in the injured hemisphere of TBI rats. In conclusion, metabolic derangements begin early (<24 h) after TBI in the immature rat and are sustained for up to 7 days. Evaluation of early metabolic alterations after TBI could identify novel targets for neuroprotection in the developing brain.
-
Journal of neurotrauma · Jun 2008
Fluctuations in cortical synchronization in pediatric traumatic brain injury.
Traumatic brain injury (TBI) is the leading cause of death and acquired disability in the pediatric population worldwide. We hypothesized that electroencephalography (EEG) synchrony and its temporal variability, analyzed during the acute phase following TBI, would be altered from that of normal children and as such would offer insights into TBI pathophysiology. Seventeen pediatric patients with mild to severe head injury admitted to a pediatric critical care unit were recruited along with 10 age- and gender-matched controls. ⋯ The temporal variability of phase synchronization among EEG electrodes increased as patients recovered and emerged from coma (p < 0.001). This temporal variability correlated with outcome (Pearson coefficient of 0.74) better than the worst Glasgow Coma Scale score, length of coma, or extent of injury on CT scan. This represents a novel approach in the evaluation of TBI in children.