Journal of neurotrauma
-
Journal of neurotrauma · Nov 2009
Conversion in ASIA impairment scale during the first year after traumatic spinal cord injury.
The neurological severity of a spinal cord injury (SCI) is commonly classified according to the American Spinal Injury Association (ASIA) Impairment Scale (AIS). The aim of this study was to assess the course of the AIS following SCI, and to discern the nature of any changes in the classification that occur. Assessments were performed in a European cohort of SCI patients within 2 weeks and at 1, 3, 6, and 12 months after the initial injury. ⋯ When the AIS remained unchanged between successive assessment points, there was no change in the number of muscles graded three or more (NMG3(+)) in 73% of the transitions. An improvement in AIS was associated with a gain in NMG3(+) in 49% of the transitions, while an aggravation in AIS was accompanied by a loss in NMG3(+) in 10% of the transitions. These results, documenting a substantial amount of spontaneous AIS conversions, should be taken into consideration when designing clinical trials to assess the effects of potential new treatments for SCI.
-
Journal of neurotrauma · Nov 2009
Difficulty of elderly SCI subjects to translate motor recovery--"body function"--into daily living activities.
The objective of this retrospective analysis was to determine whether outcome of body functions and activities as well as length of stay of inpatient rehabilitation is related to age in patients with traumatic spinal cord injury (SCI). Data were collected from a European network of 17 SCI rehabilitation centers (EM-SCI); a total of 237 traumatic SCI subjects were included. Assessments were performed at 1, 6, and 12 months after SCI. ⋯ Length of stay was not associated with age. It was concluded that age is an important determining factor for functional outcome after SCI and that elderly patients have difficulties in translating an improvement in neurological outcome into functional changes. Therefore, rehabilitation approaches in elderly subjects should focus on functional training.
-
Journal of neurotrauma · Nov 2009
Human amnion-derived multipotent progenitor cell treatment alleviates traumatic brain injury-induced axonal degeneration.
To identify a viable cell source with potential neuroprotective effects, we studied amnion-derived multipotent progenitor (AMP) cells in a rat model of penetrating ballistic-like brain injury (PBBI). AMP cells were labeled with fluorescent dye PKH26 and injected in rats immediately following right hemispheric PBBI or sham PBBI surgery by ipsilateral i.c.v. administration. At 2 weeks post-injury, severe necrosis developed along the PBBI tract and axonal degeneration was prominent along the corpus callosum (cc) and in the ipsilateral thalamus. ⋯ None of the labeled AMP cells appeared to express neural differentiation, as evidenced by the lack of double labeling with nestin, S-100, GFAP, and MAP-2 immunostaining. In conclusion, AMP cell migration was specifically induced by PBBI and requires SVZ homing, yet the neuroprotective effect of intracerebral ventrical treatment using AMP cells was not limited to the area where the cells were present. This suggests that the attenuation of the secondary brain injury following PBBI was likely to be mediated by mechanisms other than cell replacement, possibly through delivery or sustained secretion of neurotrophic factors.
-
Journal of neurotrauma · Nov 2009
The novel nitric oxide synthase inhibitor 4-amino-tetrahydro-L-biopterine prevents brain edema formation and intracranial hypertension following traumatic brain injury in mice.
Brain edema formation, resulting in increased intracranial pressure (ICP), is one of the most deleterious consequences of traumatic brain injury (TBI). Nitric oxide (NO) has previously been shown to be involved in the damage of the blood-brain barrier (BBB) and, thus, in the formation of post-traumatic brain edema; however, this knowledge never resulted in a clinically relevant therapeutic option because available NO synthase inhibitors have serious side effects in man. The aim of the current study was to investigate the therapeutic efficacy of VAS203, a novel tetrahydrobiopterine (BH3)-based NOS inhibitor, in experimental TBI. ⋯ When administered 30 min after experimental TBI (controlled cortical impact, 2.2 mg/kg/min i.v., n = 7 per group), VAS203 prevented any further increase in ICP or deterioration of cerebral blood flow. This effect was dose-dependent and long-lasting (i.e., 24 h after trauma, brain edema formation was still significantly reduced [-40%, p < 0.008; n = 7 per group] and functional improvements were present up to 7 days after TBI [p < 0.02 on post-trauma day 6; n = 8 per group]). Therefore, VAS203 may represent a promising candidate for the treatment of acute intracranial hypertension following TBI.