Journal of neurotrauma
-
Journal of neurotrauma · Dec 2009
Administration of chondroitinase ABC rostral or caudal to a spinal cord injury site promotes anatomical but not functional plasticity.
Growth-inhibitory chondroitin sulfate proteoglycans (CSPG) are a primary target for therapeutic strategies after spinal cord injury because of their contribution to the inhibitory nature of glial scar tissue, a major barrier to successful axonal regeneration. Chondroitinase ABC (ChABC) digestion of CSPGs promotes axonal regeneration beyond a lesion site with subsequent functional improvement. ChABC also has been shown to promote sprouting of spared fibers but it is not clear if functional recovery results from such plasticity. ⋯ When injected caudal to a hemicontusion injury, ChABC promoted sprouting of 5HT+ fibers into the ventral horn but not the dorsal horn. None of this sprouting resulted in a change in the synaptic component synapsin, nor did it impact performance in behavioral tests assessing motor function. These data suggest that ChABC-mediated sprouting of spared fibers does not necessarily translate into functional recovery.
-
Journal of neurotrauma · Dec 2009
Blast-related brain injury: imaging for clinical and research applications: report of the 2008 st. Louis workshop.
Blast-related traumatic brain injury (bTBI) and post-traumatic stress disorder (PTSD) have been of particular relevance to the military and civilian health care sectors since the onset of the Global War on Terror, and TBI has been called the "signature injury" of this war. Currently there are many questions about the fundamental nature, diagnosis, and long-term consequences of bTBI and its relationship to PTSD. This workshop was organized to consider these questions and focus on how brain imaging techniques may be used to enhance current diagnosis, research, and treatment of bTBI. ⋯ Foremost among our recommendations is that human autopsy and pathoanatomical data from bTBI patients need to be obtained and disseminated to the military and civilian research communities, and advanced neuroimaging used in studies of acute, subacute, and chronic cases, to determine whether there is a distinct pathoanatomical signature that correlates with long-term functional impairment, including PTSD. These data are also critical for the development of animal models to illuminate fundamental mechanisms of bTBI and provide leads for new treatment approaches. Brain imaging will need to play an increasingly important role as gaps in the scientific knowledge of bTBI and PTSD are addressed through increased coordination, cooperation, and data sharing among the academic and military biomedical research communities.