Journal of neurotrauma
-
Journal of neurotrauma · Aug 2009
Randomized Controlled TrialProstacyclin treatment in severe traumatic brain injury: a microdialysis and outcome study.
Prostacyclin (PGI(2)) is a potent vasodilator, inhibitor of leukocyte adhesion, and platelet aggregation. In trauma the balance between PGI(2) and thromboxane A(2) (TXA(2)) is shifted towards TXA(2). Externally provided PGI(2) would, from a theoretical and experimental point of view, improve the microcirculation in injured brain tissue. This study is a prospective consecutive double-blinded randomized study on the effect of PGI(2) versus placebo in severe traumatic brain injury (sTBI). All patients with sTBI were eligible. ⋯ verified sTBI, Glasgow Coma Score (GCS) at intubation and sedation of
or=10 mm Hg, and arrival within 24 h of trauma. All subjects received an intracranial pressure (ICP) measuring device, bilateral intracerebral microdialysis catheters, and a microdialysis catheter in the abdominal subcutaneous adipose tissue. Subjects were treated according to an ICP-targeted therapy based on the Lund concept. 48 patients (mean age of 35.5 years and a median GCS of 6 [3-8]) were included. We found no significant effect of prostacyclin (epoprostenol, Flolan) on either the lactate-pyruvate ratio (L/P) at 24 h or the brain glucose levels. There was no significant difference in clinical outcome between the two groups. The median Glasgow Outcome Score (GOS) at 3 months was 4, and mortality was 12.5%. The favorable outcome (GOS 4-5) was 52%. The initial L/P did not prognosticate for outcome. Thus our results indicate that there is no effect of PGI(2) at a dose of 0.5 ng/kg/min on brain L/P, brain glucose levels, or outcome at 3 months. -
Journal of neurotrauma · Aug 2009
Effect of short periods of normobaric hyperoxia on local brain tissue oxygenation and cerebrospinal fluid oxidative stress markers in severe traumatic brain injury.
Preliminary evidence suggests local brain tissue oxygenation (PbtO(2)) values of
or=20 mm Hg to avoid hypoxia. This study tested the impact of a short (2 h) trial of normobaric hyperoxia on measures of oxidative stress. ⋯ Oxidative stress markers, antioxidant reserve defenses, and ICP, MAP, and CPP did not significantly change for any time period. These preliminary findings suggest that brief periods of normobaric hyperoxia do not produce oxidative stress and/or change antioxidant reserves in CSF. Additional studies are required to examine extended periods of normobaric hyperoxia in a larger sample. -
Journal of neurotrauma · Aug 2009
Prediction of outcome utilizing both physiological and biochemical parameters in severe head injury.
Traumatic brain injury is a major socioeconomic burden, and the use of statistical models to predict outcomes after head injury can help to allocate limited health resources. Earlier prediction models analyzing admission data have been used to achieve prediction accuracies of up to 80%. Our aim was to design statistical models utilizing a combination of both physiological and biochemical variables obtained from multimodal monitoring in the neurocritical care setting as a complement to earlier models. ⋯ The combined use of microdialysis variables and PbtO(2), in addition to ICP, MAP, and CPP was found have the best predictive accuracy. The use of physiological and biochemical variables based on a decision tree analysis model has shown to provide an improvement in predictive accuracy compared with other previous models. The potential application is for outcome prediction in the multivariate setting of advanced multimodality monitoring, and validates the use of multimodal monitoring in the neurocritical care setting to have a potential benefit in predicting outcomes of patients with severe head injury.
-
Journal of neurotrauma · Aug 2009
Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients.
Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild (and some moderate) TBI can be difficult to diagnose due to lack of obvious external injuries and because the injuries are often not visible on conventional acute MRI or CT. ⋯ The present study used a neuroimaging approach integrating findings of magnetoencephalography (MEG) and diffusion tensor imaging (DTI), evaluating their utility in diagnosing mild TBI in 10 subjects in whom conventional CT and MRI showed no visible lesions in 9. The results show: (1) the integrated approach with MEG and DTI is more sensitive than conventional CT and MRI in detecting subtle neuronal injury in mild TBI; (2) MEG slow waves in mild TBI patients originate from cortical gray matter areas that experience de-afferentation due to axonal injuries in the white matter fibers with reduced fractional anisotropy; (3) findings from the integrated imaging approach are consistent with post-concussive symptoms; (4) in some cases, abnormal MEG delta waves were observed in subjects without obvious DTI abnormality, indicating that MEG may be more sensitive than DTI in diagnosing mild TBI.
-
Journal of neurotrauma · Aug 2009
Predicting outcomes of traumatic brain injury by imaging modality and injury distribution.
Early prediction of outcomes after traumatic brain injury (TBI) is often difficult. To improve prognostic accuracy soon after trauma, we compared different radiological modalities and anatomical injury distribution in a group of adult TBI patients. The four methods studied were computed tomography (CT), magnetic resonance imaging (MRI) with T2-weighted imaging (T2WI), fluid-attenuated inversion recovery (FLAIR) imaging, and susceptibility weighted imaging (SWI). ⋯ In addition, T2WI and FLAIR imaging most consistently discriminated between good and poor outcomes by zonal distribution. While SWI rarely discriminated by outcome, it was very sensitive to intraparenchymal injury and its optimal use in evaluating TBI is unclear. SWI and other new imaging modalities should be further studied to fully evaluate their prognostic utility in TBI evaluation.