Journal of neurotrauma
-
Journal of neurotrauma · Jul 2011
Clinical TrialNormobaric hyperoxia in traumatic brain injury: does brain metabolic state influence the response to hyperoxic challenge?
This study sought to investigate whether normobaric hyperoxia (NH) improves brain oxygenation and brain metabolism in the early phase of severe and moderate traumatic brain injury (TBI) and whether this effect occurs uniformly in all TBI patients. Thirty patients (9 women and 21 men) with a median initial Glasgow Coma Score (GCS) of 6 (range, 3-12) were monitored using a brain microdialysis (MD) catheter with a brain tissue oxygen sensor (PtiO(2)) placed in the least-injured hemisphere. The inspired oxygen fraction was increased to 100% for 2 h. ⋯ In patients with normal baseline brain lactate levels, we did not find any significant changes in the metabolic variables after NH. This suggests that the baseline metabolic state should be taken into account when applying NH to patients with TBI. This maneuver may only be effective in a specific group of patients.
-
Journal of neurotrauma · Jul 2011
Short-term moderate hypocapnia augments detection of optimal cerebral perfusion pressure.
An autoregulation-oriented strategy has been proposed to guide neurocritical therapy toward the optimal cerebral perfusion pressure (CPPOPT). The influence of ventilation changes is, however, unclear. We sought to find out whether short-term moderate hypocapnia (HC) shifts the CPPOPT or affects its detection. ⋯ Moderate HC did not shift this CPPOPT but enabled its detection in another 17 patients (CPPOPT left: 83.94±14.82; right: 85.28±14.73 mm Hg). The detection of CPPOPT was achieved via significantly improved Mx-autoregulatory index and an increase of CPP mean. It appeared that short-term moderate HC augmented the detection of an optimum CPP, and may therefore usefully support CPP-guided therapy in patients with TBI.
-
Journal of neurotrauma · Jul 2011
Comparative StudyObjective measures of motor dysfunction after compression spinal cord injury in adult rats: correlations with locomotor rating scores.
Precise assessment of motor deficits after traumatic spinal cord injury (SCI) in rodents is crucial for understanding the mechanisms of functional recovery and testing therapeutic approaches. Here we analyzed the applicability to a rat SCI model of an objective approach, the single-frame motion analysis, created and used for functional analysis in mice. Adult female Wistar rats were subjected to graded compression of the spinal cord. ⋯ FSA co-varied with RHI only in the severely impaired rats, while RHI and CLS were barely correlated. Our findings suggest that the numerical parameters estimate, as intended by design, predominantly different aspects of locomotion. The use of these objective measures combined with BBB rating provides a time- and cost-efficient opportunity for versatile and reliable functional evaluations in both severely and moderately impaired rats, combining clinical assessment with precise numerical measures.
-
Journal of neurotrauma · Jul 2011
Attenuation of astrocyte activation by TAT-mediated delivery of a peptide JNK inhibitor.
Astrocyte activation contributes to the brain's response to disease and injury. Activated astrocytes generate harmful radicals that exacerbate brain damage including nitric oxide, peroxides and superoxides. Furthermore, reactive astrocytes hinder regeneration of damaged neural circuits by secreting neuro-developmental inhibitors and glycosaminoglycans (GAGs), which physically block growth cone extension. ⋯ TAT fused to a peptide JNK inhibitor delivered the peptide inhibitor to activated astrocytes and significantly reduced activation. Our study is the first to report significant and direct modulation of astrocyte activation with a peptide JNK inhibitor. Our promising in vitro results warrant in vivo follow-up, as TAT-mediated protein delivery may have broad therapeutic potential for preventing astrocyte activation with the possibility of limiting off-target, negative side effects.
-
Journal of neurotrauma · Jul 2011
Post-stroke hypothermia provides neuroprotection through inhibition of AMP-activated protein kinase.
Hypothermia is robustly protective in pre-clinical models of both global and focal ischemia, as well as in patients after cardiac arrest. Although the mechanism for hypothermic neuroprotection remains unknown, reducing metabolic drive may play a role. Capitalizing on the beneficial effects of hypothermia while avoiding detrimental effects such as infection will be the key to moving this therapy forward as a treatment for stroke. ⋯ These effects were mediated by a reduction in AMPK activation rather than a reduction in LKB1, an upstream AMPK kinase. In summary, these studies provide evidence that hypothermia exerts its protective effect in part by inhibiting AMPK activation in experimental focal stroke. This suggests that AMPK represents a potentially important biological target for stroke treatment.