Journal of neurotrauma
-
Journal of neurotrauma · Sep 2011
Traumatic brain injury in adult rats causes progressive nigrostriatal dopaminergic cell loss and enhanced vulnerability to the pesticide paraquat.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of nigrostriatal dopaminergic neurons and the accumulation of alpha-synuclein. Both traumatic brain injury (TBI) and pesticides are risk factors for PD, but whether TBI causes nigrostriatal dopaminergic cell loss in experimental models and whether it acts synergistically with pesticides is unknown. We have examined the acute and long-term effects of TBI and exposure to low doses of the pesticide paraquat, separately and in combination, on nigrostriatal dopaminergic neurons in adult male rats. ⋯ At 26 weeks post injury, TBI alone induced a 30% bilateral loss of dopaminergic neurons that was not exacerbated by paraquat. These data suggest that TBI is sufficient to induce a progressive degeneration of nigrostriatal dopaminergic neurons. Furthermore, TBI and pesticide exposure, when occurring within a defined time frame, could combine to increase the PD risk.
-
Until recently, mild traumatic brain injury (mTBI) or "concussion" was generally ignored as a major health issue. However, emerging evidence suggests that this injury is by no means mild, considering it induces persisting neurocognitive dysfunction in many individuals. Although little is known about the pathophysiological aspects of mTBI, there is growing opinion that diffuse axonal injury (DAI) may play a key role. ⋯ However, the distribution of the axonal pathology was different between planes of head rotation. In particular, more swollen axonal profiles were observed in the brainstems of animals injured in the axial plane, suggesting an anatomic substrate for prolonged loss of consciousness in mTBI. Overall, these data support DAI as an important pathological feature of mTBI, and demonstrate that surprisingly overt axonal pathology may be present, even in cases without a sustained loss of consciousness.
-
Journal of neurotrauma · Sep 2011
Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury.
Transplantation of bone marrow mesenchymal stromal cells (MSCs) has been shown to improve the functional recovery in various models of spinal cord injury (SCI). However, the issues of the optimal dose, timing, and route of MSC application are crucial factors in achieving beneficial therapeutic outcomes. The objective of this study was to standardize the intrathecal (IT) catheter delivery of rat MSCs after SCI in adult rats. ⋯ Transplanted PKH-67 MSCs were able to migrate and incorporate into the central lesion. However, only a limited number of surviving MSCs, ranging from 24,128±1170 to 116,258±8568 cells per graft, were observed within the damaged white matter. These results suggest that repetitive IT transplantation, which imposes a minimal burden on the animals, may improve behavioral function when the dose, timing, and targeted IT delivery of MSCs towards the lesion cavity are optimized.
-
Journal of neurotrauma · Sep 2011
Transplanted L1 expressing radial glia and astrocytes enhance recovery after spinal cord injury.
A major obstacle for the transplantation of neural stem cells (NSCs) into the lesioned spinal cord is their predominant astrocytic differentiation after transplantation. We took advantage of this predominant astrocytic differentiation of NSCs and expressed the paradigmatic beneficial neural cell adhesion molecule L1 in radial glial cells and reactive and nonreactive astrocytes as novel cellular vehicles to express L1 under the control of the promoter for the human glial fibrillary acidic protein (GFAP-L1 NSCs). ⋯ Morphological analysis revealed that mice grafted with GFAP-L1 NSCs exhibited increased neuronal differentiation and migration of transplanted cells, as well as increased soma size and cholinergic synaptic coverage of host motoneurons and increased numbers of endogenous catecholaminergic nerve fibers caudal to the lesion site. These findings show that L1-expressing astrocytes and radial glial cells isolated from GFAP-L1 NSC cultures represent a novel strategy for improving functional recovery after spinal cord injury, encouraging the use of the human GFAP promoter to target beneficial transgene expression in transplanted stem cells.
-
Journal of neurotrauma · Sep 2011
Ketogenic diet prevents alterations in brain metabolism in young but not adult rats after traumatic brain injury.
Previous studies have shown that the change of cerebral metabolic rate of glucose (CMRglc) in response to traumatic brain injury (TBI) is different in young (PND35) and adult rats (PND70), and that prolonged ketogenic diet treatment results in histological and behavioral neuroprotection only in younger rat brains. However, the mechanism(s) through which ketones act in the injured brain and the biochemical markers of their action remain unknown. Therefore, the current study was initiated to: 1) determine the effect of injury on the neurochemical profile in PND35 compared to PND70 rats; and 2) test the effect of early post-injury administration of ketogenic diet on brain metabolism in PND35 versus PND70 rats. ⋯ The improvement in energy metabolism in the PND35 brains was accompanied by the recovery of NAA and reduction of lactate levels, as well as amelioration of the deficits of other amino acids and membrane metabolites. These results indicate that the PND35 brains are more resistant to the injury, indicated by a delayed deficit in energy metabolism. Moreover, the younger brains revert to ketones metabolism more quickly than do the adult brains, resulting in better neurochemical and cerebral metabolic recovery after injury.