Journal of neurotrauma
-
Journal of neurotrauma · Feb 2012
Deletion of the pro-apoptotic endoplasmic reticulum stress response effector CHOP does not result in improved locomotor function after severe contusive spinal cord injury.
Manipulation of various components of the endoplasmic reticulum (ER) stress response (ERSR) has led to functional recovery in diabetes, cancer, and several neurodegenerative diseases, indicating its use as a potential therapeutic intervention. One of the downstream pro-apoptotic transcription factors activated by the ERSR is CCAAT enhancer binding protein (C/EBP) homologous protein (CHOP). Recently, we showed significant recovery in hindlimb locomotion function after moderate contusive spinal cord injury (SCI) in mice null for CHOP. ⋯ Concomitantly, Basso Mouse Scale (BMS) scores and white matter sparing between the wild-type and CHOP-null mice revealed no significant differences. Given the complex pathophysiology of severe SCI, ablation of CHOP alone is not sufficient to rescue functional deficits. These data raise the caution that injury severity may be a key variable in attempting to translate preclinical therapies to clinical practice.
-
Journal of neurotrauma · Feb 2012
Delayed anti-nogo-a antibody application after spinal cord injury shows progressive loss of responsiveness.
Blocking the function of the myelin protein Nogo-A or its signaling pathway is a promising method to overcome an important neurite growth inhibitory factor of the adult central nervous system (CNS), and to enhance axonal regeneration and plasticity after brain or spinal cord injuries. Several studies have shown increased axonal regeneration and enhanced compensatory sprouting, along with substantially improved functional recovery after treatment with anti-Nogo-A antibodies, Nogo-receptor antagonists, or inhibition of the downstream mediator RhoA/ROCK in adult rodents. Proof-of-concept studies in spinal cord-injured macaque monkeys with anti-Nogo-A antibodies have replicated these findings; recently, clinical trials in spinal cord-injured patients have begun. ⋯ We found that lesioned CST fibers regenerated over several millimeters after acute or 1-week-delayed treatments, but not when the antibody treatment was started with a delay of 2 weeks. Swimming and narrow beam crossing recovered well in rats treated acutely or with a 1-week delay with anti-Nogo-A antibodies, but not in the 2-week-delayed group. These results show that the time frame for treatment of spinal cord lesions with anti-Nogo-A antibodies is restricted to less than 2 weeks in adult rodents.
-
Journal of neurotrauma · Feb 2012
Fibronectin inhibits chronic pain development after spinal cord injury.
Chronic pain following spinal cord injury (SCI) is a highly prevalent clinical condition that is difficult to treat. Using both von Frey filaments and radiant infrared heat to assess mechanical allodynia and thermal hyperalgesia, respectively, we have demonstrated that a one-time injection of fibronectin (50 μg/mL) into the spinal dorsal column (1 μL/min each injection for a total of 5 μL) immediately after SCI inhibits the development of mechanical allodynia (but not thermal hyperalgesia) over an 8-month observation period following spinal cord dorsal column crush (DCC). DCC will only induce mechanical Allodynia, but not thermal hyperalgesia or overt motor deficits. ⋯ Furthermore, we found that acute fibronectin treatment diminished inflammation and blood-spinal cord barrier permeability, which in turn leads to enhanced fiber sparing and sprouting. In particular, the reduction of serotonin (5-HT) in the superficial dorsal horn, an important descending brainstem system in the modulation of pain, was blocked with fibronectin treatment. We conclude that treatment of SCI with fibronectin preserves sensory regulation and prevents the development of chronic allodynia, providing a potential therapeutic intervention to treat chronic pain following SCI.
-
Journal of neurotrauma · Feb 2012
CD11d Antibody Treatment Improves Recovery in Spinal Cord-Injured Mice.
Acute administration of a monoclonal antibody (mAb) raised against the CD11d subunit of the leukocyte CD11d/CD18 integrin after spinal cord injury (SCI) in the rat greatly improves neurological outcomes. This has been chiefly attributed to the reduced infiltration of neutrophils into the injured spinal cord in treated rats. More recently, treating spinal cord-injured mice with a Ly-6G neutrophil-depleting antibody was demonstrated to impair neurological recovery. ⋯ The anti-CD11d treatment reduced neutrophil infiltration into the injured mouse spinal cord and was associated with increased white matter sparing and reductions in myeloperoxidase (MPO) activity, reactive oxygen species, lipid peroxidation, and scar formation. These improvements in the injured spinal cord microenvironment were accompanied by increased serotonin (5-HT) immunoreactivity below the level of the lesion and improved locomotor recovery. Our results with the 205C CD11d mAb treatment complement previous work using this anti-integrin treatment in a rat model of SCI.
-
Journal of neurotrauma · Feb 2012
Docosahexaenoic acid pretreatment confers protection and functional improvements after acute spinal cord injury in adult rats.
Currently, few interventions have been shown to successfully limit the progression of secondary damage events associated with the acute phase of spinal cord injury (SCI). Docosahexaenoic acid (DHA, C22:6 n-3) is neuroprotective when administered following SCI, but its potential as a pretreatment modality has not been addressed. This study used a novel DHA pretreatment experimental paradigm that targets acute cellular and molecular events during the first week after SCI in rats. ⋯ DHA pretreatment induced levels of Akt and cyclic AMP responsive element binding protein (CREB) mRNA and protein. This study shows for the first time that DHA pretreatment ameliorates functional deficits, and increases tissue sparing and precursor cell survival. Further, our data suggest that DHA-mediated activation of pro-survival/anti-apoptotic pathways may be independent of its anti-inflammatory effects.