Journal of neurotrauma
-
Journal of neurotrauma · May 2013
Repeated mild closed head injury impairs short-term visuospatial memory and complex learning.
Concussive force can cause neurocognitive and neurobehavioral dysfunction by inducing functional, electrophysiological, and/or ultrastructural changes within the brain. Although concussion-triggered symptoms typically subside within days to weeks in most people, in 15%-20% of the cases, symptomology can continue beyond this time point. Problems with memory, attention, processing speed, and cognitive flexibility (e.g., problem solving, conflict resolution) are some of the prominent post-concussive cognitive symptoms. ⋯ Learning and memory impairments were still observed in repeated mCHI mice when tested 3 months post-injury. Repeated mCHI also reduced cerebral perfusion, prolonged the inflammatory response, and in some animals, caused hippocampal neuronal loss. Our results show that repeated mCHI can reproduce some of the deficits seen after repeated concussions in humans and may be suitable for drug discovery studies and translational research.
-
Journal of neurotrauma · May 2013
Challenges in the development of rodent models of mild traumatic brain injury.
Approximately 75% of traumatic brain injuries (TBI) are classified mild (mTBI). Despite the high frequency of mTBI, it is the least well studied. The prevalence of mTBI among service personnel returning from Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF) and the recent reports of an association between repeated mTBI and the early onset of Alzheimer's and other types of dementias in retired athletes has focused much attention on mTBI. ⋯ Although methods for the diagnosis and evaluation of the acute and chronic effects of mTBI in humans are well established, the same is not the case for rodents, the most widely used animal for TBI studies. Despite the magnitude of the difficulties associated with adapting these methods for experimental mTBI research, they must be surmounted. The identification and testing of treatments for mTBI depends of the development, characterization and validation of reproducible, clinically relevant models of mTBI.
-
Journal of neurotrauma · May 2013
Treatment of mild traumatic brain injury with an erythropoietin-mimetic peptide.
Mild traumatic brain injury (mTBI) results in an estimated 75-90% of the 1.7 million TBI-related emergency room visits each year. Post-concussion symptoms, which can include impaired memory problems, may persist for prolonged periods of time in a fraction of these cases. The purpose of this study was to determine if an erythropoietin-mimetic peptide, pyroglutamate helix B surface peptide (pHBSP), would improve neurological outcomes following mTBI. ⋯ Motor tasks were only transiently impaired in this mTBI model, and no treatment effect on motor performance was observed with pHBSP. Despite the minimal tissue injury with this mTBI model, there was significant activation of inflammatory cells identified by labeling with CD68, which was reduced in the pHBSP-treated animals. The results suggest that pHBSP may improve cognitive function following mTBI.