Journal of neurotrauma
-
Journal of neurotrauma · Jul 2013
Numerical impact simulation of gradually increased kinetic energy transfer has the potential to break up folded protein structures resulting in cytotoxic brain tissue edema.
Although the consequences of traumatic brain injury (TBI) and its treatment have been improved, there is still a substantial lack of understanding the mechanisms. Numerical simulation of the impact can throw further lights on site and mechanism of action. A finite element model of the human head and brain tissue was used to simulate TBI. ⋯ Further, impacts below 6 m/s showed none or very slight increase in impact ICP and strain levels, whereas impacts of 6 m/s or higher showed a gradual increase of the impact ICP and strain levels reaching over 1000 KPa and over 30%, respectively. The present simulation study shows that the free kinetic energy transfer, impact ICP, and strain levels all have the potential to initiate cytotoxic brain tissue edema by unfolding protein structures. The definition of mild, moderate, and severe TBI should thus be looked upon as the same condition and separated only by a gradual severity of impact.
-
Journal of neurotrauma · Jul 2013
Cortical reorganization after experimental traumatic brain injury: a functional autoradiography study.
Cortical sensorimotor (SM) maps are a useful readout for providing a global view of the underlying status of evoked brain function, as well as a gross overview of ongoing mechanisms of plasticity. Recent evidence in the rat controlled cortical impact (CCI) injury model shows that the ipsilesional (injured) hemisphere is temporarily permissive for axon sprouting. This would predict that size and spatial alterations in cortical maps may occur much earlier than previously tested and that they might be useful as potential markers of the postinjury plasticity period as well as indicators of outcome. ⋯ By 30 days, however, contralesional activation had greatly subsided and existing ipsilesional activity was enhanced within the same novel cortical regions that were identified acutely. These data indicate that significant reorganization of the cortical SM maps occurs after injury that evolves with a particular postinjury time course. We discuss these data in terms of the known mechanisms of plasticity that are likely to underlie these map changes, with particular reference to the differences and similarities that exist between rodent models of stroke and traumatic brain injury.
-
Journal of neurotrauma · Jul 2013
Biomarkers track damage after graded injury severity in a rat model of penetrating brain injury.
The goal of this project was to determine whether biochemical markers of brain damage can be used to diagnose and assess the severity of injury in a rat model of penetrating ballistic-like brain injury (PBBI). To determine the relationship between injury magnitude and biomarker levels, rats underwent three discrete PBBI severity levels defined by the magnitude of the ballistic component of the injury, calibrated to equal 5%, 10%, or 12.5% of total rat brain volume. Cortex, cerebrospinal fluid (CSF), and blood were collected at multiple time points. ⋯ In plasma, SBDP150 was elevated at 5 min after 10% PBBI and at 6 h after 12.5% PBBI. UCH-L1 levels in plasma were elevated acutely at 5 min post-injury reflecting injury severity and rapidly decreased within 2 h. Overall, our results support the conclusion that biomarkers are effective indicators of brain damage after PBBI and may also aid in the assessment of injury magnitude.