Journal of neurotrauma
-
Journal of neurotrauma · Aug 2013
A five year prospective investigation of anterior pituitary function after traumatic brain injury: is hypopituitarism long-term after head trauma associated with autoimmunity?
Traumatic brain injury (TBI) has been recently recognized as a common cause of pituitary dysfunction. However, there are not sufficient numbers of prospective studies to understand the natural history of TBI induced hypopituitarism. The aim was to report the results of five years' prospective follow-up of anterior pituitary function in patients with mild, moderate and severe TBI. ⋯ However in severe TBI, ACTH and GH status of the patients at the first year evaluation persisted at the fifth year. Therefore, screening pituitary function after TBI for five years is important, especially in patients with mild TBI. Moreover, close strong associations between the presence of high titers of APA and/or AHA and hypopituitarism at the fifth year were shown for the first time.
-
Brains undergo significant remodeling after traumatic brain injury (TBI). The Rho guanine triphosphate (GTP)ase pathways control brain remodeling during development and under pathological conditions. How the Rho GTPase pathways are regulated in the brain after TBI remains largely unknown, however. ⋯ The results showed that TBI leads to activation and translocation of RhoA and Rac1 proteins from cytosolic fraction to the membrane fraction after injury. Consistently, the Rho guanine nucleotide exchange factors GEF-H1 and Cool-2/αPix are significantly activated by dephosphorylation and accumulation in the cytosolic fractions during the post-TBI phase. Because the Rho GTPase pathways are key regulators of brain remodeling, these results depict regulatory mechanisms of the Rho GTPase pathways after TBI, and pave the way for the study of therapeutic agents targeting the Rho GTPase pathways for functional recovery after TBI.
-
Journal of neurotrauma · Aug 2013
Post-concussion symptom reporting after multiple mild traumatic brain injuries.
The relationship between previous mild traumatic brain injury/injuries (MTBI) and recovery from a subsequent MTBI may be complex. The present study investigated three factors hypothesized to influence this relation: (1) the number of prior MTBIs, (2) the interval between MTBIs, and (3) the certainty level of previous MTBIs. The study design was retrospective cross-sectional. ⋯ In conclusion, participants with multiple MTBIs did not report more post-concussion symptoms than those with no history of MTBI. Previous MTBI(s), however, were associated with increased symptom reporting from a subsequent MTBI to the extent they occurred closer in time. Having one or two previous remote MTBIs was not associated with worse outcome from subsequent MTBI in this sample.
-
Aquaporin-4 (AQP4) is an astroglial water channel protein that plays an important role in the transmembrane movement of water within the central nervous system. AQP4 has been implicated in numerous pathological conditions involving abnormal fluid accumulation, including spinal cord edema following traumatic injury. AQP4 has not been studied in post-traumatic syringomyelia, a condition that cannot be completely explained by current theories of cerebrospinal fluid dynamics. ⋯ Immunostaining showed that AQP4 was expressed around all syrinx cavities, most notably adjacent to a mature syrinx (six- and 12-week time-point). This suggests a relationship between AQP4 and fluid accumulation in post-traumatic syringomyelia. However, whether this is a causal relationship or occurs in response to an increase in fluid needs to be established.
-
Journal of neurotrauma · Aug 2013
Arginine vasopressin V1a receptor-deficient mice have reduced brain edema and secondary brain damage following traumatic brain injury.
The formation of brain edema and subsequent intracranial hypertension are major predictors of unfavorable outcome following traumatic brain injury (TBI). Previously, we reported that arginine vasopressin (AVP) receptor antagonists reduce post-traumatic and post-ischemic brain edema in mice. The aim of the current study was to investigate further the contribution of arginine vasopressin V1a receptors to TBI-induced secondary brain damage in V1a receptor knock-out mice. ⋯ Furthermore, the V1a receptor knock-out mice had less neurological dysfunction (3.2±0.8 vs. 7.0±1.4 in wild-type mice) and weight loss (1.0±1.0% vs. 4.9±1.8% in wild-type mice) seven days after CCI. Our data show that mice lacking V1a receptors have less secondary brain damage following experimental traumatic brain injury. We therefore conclude that V1a receptors may represent a novel drug target for preventing post-traumatic brain edema.