Journal of neurotrauma
-
Journal of neurotrauma · Sep 2013
Randomized Controlled Trial Multicenter StudyNeurological Outcome Scale for Traumatic Brain Injury: III. Criterion-Related Validity and Sensitivity to Change in the NABIS Hypothermia-II Clinical Trial.
The neurological outcome scale for traumatic brain injury (NOS-TBI) is a measure assessing neurological functioning in patients with TBI. We hypothesized that the NOS-TBI would exhibit adequate concurrent and predictive validity and demonstrate more sensitivity to change, compared with other well-established outcome measures. We analyzed data from the National Acute Brain Injury Study: Hypothermia-II clinical trial. ⋯ The NOS-TBI demonstrated higher sensitivity to change, compared with the GOS (p<0.038) and GOS-E (p<0.016). In summary, the NOS-TBI demonstrated adequate concurrent and predictive validity as well as sensitivity to change, compared with gold-standard outcome measures. The NOS-TBI may enhance prediction of outcome in clinical practice and measurement of outcome in TBI research.
-
Journal of neurotrauma · Sep 2013
Multicenter Study Clinical TrialGFAP-BDP as an Acute Diagnostic Marker in Traumatic Brain Injury: Results from the Prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study.
Reliable diagnosis of traumatic brain injury (TBI) is a major public health need. Glial fibrillary acidic protein (GFAP) is expressed in the central nervous system, and breakdown products (GFAP-BDP) are released following parenchymal brain injury. Here, we evaluate the diagnostic accuracy of elevated levels of plasma GFAP-BDP in TBI. ⋯ GFAP-BDP levels reliably distinguish the presence and severity of CT scan findings in TBI patients. Although these findings confirm and extend prior studies, a larger prospective trial is still needed to validate the use of GFAP-BDP as a routine diagnostic biomarker for patient care and clinical research. The term "mild" continues to be a misnomer for this patient population, and underscores the need for evolving classification strategies for TBI targeted therapy. (ClinicalTrials.gov number NCT01565551; NIH Grant 1RC2 NS069409).
-
Journal of neurotrauma · Sep 2013
Rehabilitation outcome of unconscious traumatic brain injury patients.
Outcome prediction of traumatic brain injury (TBI) patients with severe disorders of consciousness (DOC) at the end of their time in an intensive care setting is important for clinical decision making and counseling of relatives, and constitutes a major challenge. Even the question of what constitutes an improved outcome is controversially discussed. We have conducted a retrospective cohort study for the rehabilitation dynamics and outcome of TBI patients with DOC. ⋯ In conclusion, despite a strong negative selection, a substantial proportion of severe TBI patients with DOC achieve functional improvements or at least emerge from MCS within the inpatient rehabilitation phase. In order to avoid self-fulfilling prophecies in decision making, it is important to be aware of the fact that the beginning of clinical improvement may take several months after brain injury. In this study, separation of both of the functional outcome groups started by 7 weeks post-injury.
-
Journal of neurotrauma · Sep 2013
17β-estradiol confers protection after traumatic brain injury in the rat and involves activation of g protein-coupled estrogen receptor 1.
Abstract Traumatic brain injury (TBI) is a significant public health problem in the United States. Despite preclinical success of various drugs, to date all clinical trials investigating potential therapeutics have failed. Recently, sex steroid hormones have sparked interest as possible neuroprotective agents after traumatic injury. ⋯ We also report a significant reduction in astrogliosis in the ipsilateral cortex, hilus, and CA 2/3 region of the hippocampus. Finally, these effects were observed to be chiefly dose-dependent for E2, with the 5 mg/kg dose generating a more robust level of protection. Our findings further elucidate estrogenic compounds as a clinically relevant pharmacotherapeutic strategy for treatment of secondary injury following TBI, and intriguingly, reveal a novel potential therapeutic target in GPER.
-
Journal of neurotrauma · Sep 2013
Why Is CA3 More Vulnerable Than CA1 in Experimental Models of Controlled Cortical Impact-Induced Brain Injury?
One interesting finding of controlled cortical impact (CCI) experiments is that the CA3 region of the hippocampus, which is positioned further from the impact than the CA1 region, is reported as being more injured. The current literature has suggested a positive correlation between brain tissue stretch and neuronal cell loss. However, it is counterintuitive to assume that CA3 is stretched more during CCI injury. ⋯ Simulation results demonstrated that for CCI with a 5-mm diameter, flat shape impactor, CA3 experienced increased tensile strains over a larger area and to a greater magnitude than did CA1 for group 1, which best explained why CA3 is more sensitive to CCI injury. However, for groups 2-4, the total volume with high strain (>30%) in CA3 was smaller than that in CA1. The FE rat brain model, with detailed hippocampal structures presented here, will help to engineer desired experimental neurotrauma models by virtually characterizing brain biomechanics before testing.