Journal of neurotrauma
-
Journal of neurotrauma · Oct 2014
Systemic Platelet Dysfunction is the Result of Local Dysregulated Coagulation and Platelet Activation in the Brain in a Rat Model of Isolated Traumatic Brain Injury.
Coagulopathy after severe traumatic brain injury (TBI) has been extensively reported. Clinical studies have identified a strong relationship between diminished platelet-rich thrombus formation, responsiveness to adenosine diphosphate agonism, and severity of TBI. ⋯ Using immunohistochemical techniques and thromboelastography platelet mapping, the current study demonstrated that the expression of coagulation (tissue factor and fibrin) and platelet activation (P-selectin) markers in the injured brain paralleled the alteration in systemic platelet responsiveness to the agonists, adenosine diphosphate and arachodonic acid. Results of this study demonstrate that local procoagulant changes in the injured brain have profound effects on systemic platelet function.
-
Journal of neurotrauma · Oct 2014
Acute Reduction of Microglia Does Not Alter Axonal Injury In a Mouse Model of Repetitive Concussive Traumatic Brain Injury.
The pathological processes that lead to long-term consequences of multiple concussions are unclear. Primary mechanical damage to axons during concussion is likely to contribute to dysfunction. Secondary damage has been hypothesized to be induced or exacerbated by inflammation. ⋯ Altogether, these data are most consistent with the idea that microglia do not contribute to acute axon degeneration after multiple concussive injuries. The possibility of longer-term effects on axon structure or function cannot be ruled out. Nonetheless, alternative strategies directly targeting injury to axons may be a more beneficial approach to concussion treatment than targeting secondary processes of microglial-driven inflammation.
-
Journal of neurotrauma · Oct 2014
Elevated cell-free plasma DNA level as an independent predictor of mortality in patients with severe traumatic brain injury.
Trauma is the leading cause of death in individuals less than 45 years old worldwide, and up to 50% of trauma fatalities are because of brain injury. Prediction of outcome is one of the major problems associated with severe traumatic brain injury (TBI), and research efforts have focused on the investigation of biomarkers with prognostic value after TBI. Therefore, our aim was to investigate whether cell-free DNA concentrations correlated to short-term primary outcome (survival or death) and Glasgow Coma Scale (GCS) scores after severe TBI. ⋯ Plasma DNA concentrations at the chosen cutoff point (≥171,381 kilogenomes-equivalents/L) predicted mortality with a specificity of 90% and a sensitivity of 43%. Logistic regression analysis showed that elevated plasma DNA levels were independently associated with death (p<0.001). In conclusion, high cell-free DNA concentration was a predictor of short-term mortality after severe TBI.