Journal of neurotrauma
-
Journal of neurotrauma · Apr 2014
CSF Cortisol and Progesterone Profiles and Outcomes Prognostication after Severe TBI.
Despite significant advances in the management of head trauma, there remains a lack of pharmacological treatment options for traumatic brain injury (TBI). While progesterone clinical trials have shown promise, corticosteroid trials have failed. The purpose of this study was to (1) characterize endogenous cerebrospinal fluid (CSF) progesterone and cortisol levels after TBI, (2) determine relationships between CSF and serum profiles, and (3) assess the utility of these hormones as predictors of long-term outcomes. ⋯ As a precursor to cortisol, progesterone mediated these effects. Serum and CSF levels for both cortisol and progesterone were strongly correlated after TBI relative to controls, possibly because of blood-brain barrier disruption. Also, differentially impaired hormone transport and metabolism mechanisms after TBI, potential de novo synthesis of steroids within the brain, and the complex interplay of cortisol and pro-inflammatory cytokines may explain these acute hormone profiles and, when taken together, may help shed light on why corticosteroid trials have previously failed and why progesterone treatment after TBI may be beneficial.
-
Journal of neurotrauma · Apr 2014
Evidence for the therapeutic efficacy of either mild hypothermia or oxygen radical scavengers following repetitive mild traumatic brain injury.
Repetitive brain injury, particularly that occurring with sporting-related injuries, has recently garnered increased attention in both the clinical and public settings. In the laboratory, we have demonstrated the adverse axonal and vascular consequences of repetitive brain injury and have demonstrated that moderate hypothermia and/or FK506 exerted protective effects after repetitive mild traumatic brain injury (mTBI) when administered within a specific time frame, suggesting a range of therapeutic modalities to prevent a dramatic exacerbation. In this communication, we revisit the utility of targeted therapeutic intervention to seek the minimal level of hypothermia needed to achieve protection while probing the role of oxygen radicals and their therapeutic targeting. ⋯ Whereas complete impairment of vascular reactivity was observed in group 1 (without intervention), significant preservation of vascular reactivity was found in the other groups. Similarly, whereas remarkable increase in the APP-positive axon was observed in group 1, there were no significant increases in the other groups. Collectively, these findings indicate that even mild hypothermia or the blunting free radical damage, even when performed in a delayed period, is protective in repetitive mTBI.
-
Journal of neurotrauma · Apr 2014
PARP-1 Inhibition Attenuates Neuronal Loss, Microglia Activation and Neurological Deficits after Traumatic Brain Injury.
Traumatic brain injury (TBI) causes neuronal cell death as well as microglial activation and related neurotoxicity that contribute to subsequent neurological dysfunction. Poly (ADP-ribose) polymerase (PARP-1) induces neuronal cell death through activation of caspase-independent mechanisms, including release of apoptosis inducing factor (AIF), and microglial activation. Administration of PJ34, a selective PARP-1 inhibitor, reduced cell death of primary cortical neurons exposed to N-Methyl-N'-Nitro-N-Nitrosoguanidine (MNNG), a potent inducer of AIF-dependent cell death. ⋯ Stereological analysis demonstrated that PJ34 treatment reduced the lesion volume, attenuated neuronal cell loss in the cortex and thalamus, and reduced microglial activation in the TBI cortex. PJ34 treatment did not improve cognitive performance in a Morris water maze test or reduce neuronal cell loss in the hippocampus. Overall, our data indicate that PJ34 has a significant, albeit selective, neuroprotective effect after experimental TBI, and its therapeutic effect may be from multipotential actions on neuronal cell death and neuroinflammatory pathways.
-
Journal of neurotrauma · Apr 2014
Assessment of an Experimental Rodent Model of Pediatric Mild Traumatic Brain Injury.
Childhood is one the highest risk periods for experiencing a mild traumatic brain injury (mTBI) from sports-related concussions, motor vehicle accidents, and falls. In addition, many children experience lingering symptomology (post-concussion syndrome) from these closed head injuries. Although the negative sequel of mTBI has been described, a clinically reliable animal model of mild pediatric brain injury has not. ⋯ Juvenile rats who experienced a single mTBI displayed significant motor/balance impairments when tested on the beam walking task and in the open field, as well as deficits of executive functioning as measured with the novel context mismatch task and the probe trial of the Morris water task. In addition, both male and female rats showed depression-like behavior in the forced swim task, with male rats also exhibiting decreased anxiety-related behaviors in the elevated plus maze. The results from this study suggest that the modified weight-drop technique induces a clinically relevant behavioral phenotype in juvenile rats, and may provide researchers with a reliable animal model of mTBI/concussion from which clinical therapeutic strategies could be developed.
-
Journal of neurotrauma · Apr 2014
Contribution of psychological trauma to outcomes after traumatic brain injury: Assaults versus sporting injuries.
Clinical research into outcomes after traumatic brain injury (TBI) frequently combines injuries that have been sustained through different causes (e.g., car accidents, assaults, and falls), the effect of which is not well understood. This study examined the contribution of injury-related psychological trauma—which is more commonly associated with specific types of injuries—to outcomes after nonpenetrating TBI in order to determine whether it may be having a differential effect in samples containing mixed injuries. Data from three groups that were prospectively recruited for two larger studies were compared: one that sustained a TBI as a result of physical assaults (i.e., psychologically traumatizing) and another as a result of sporting injuries (i.e., nonpsychologically traumatizing), as well as an orthopedic control group (OC). ⋯ The TBI(assault) group reported significantly poorer psychosocial and emotional outcomes and higher rates of litigation (criminal rather than civil) than both the TBI(sport) and OC groups approximately 6 months postinjury, but there were no differences in the cognitive or functional outcomes of the three groups. The findings suggest that the cause of a TBI may assist in explaining some of the differences in outcomes of people who have seemingly comparable injuries. Involvement in litigation and the cause of an injury may also be confounded, which may lead to the erroneous conclusion that litigants have poorer outcomes.