Journal of neurotrauma
-
Journal of neurotrauma · Aug 2014
Engineering In Situ Crosslinkable, Injectable, and Neurocompatible Hydrogels.
Physical injuries of the central nervous system (CNS) are prevalent and very severe because the CNS has limited capacity to replace neuronal loss from the injury. A growing body of evidence has suggested that exogenous cell transplantation is one promising strategy to promote CNS regeneration. Direct injection of neural stem cells (NSCs) to the lesion site, however, may not be an optimal therapeutic strategy because of poor viability and functionality of transplanted cells resulting from the local hostile tissue environment. ⋯ By controlling the cross-linking density via varying the amount of cross-linker (PEGDA) and the concentration of the adhesive component gelatin, an optimal microenvironment for the survival, proliferation, and neuronal differentiation of NSCs was created in vitro. The soft hydrogel of less than 10 Pa with Gtn-SH content (50%) is one of the optimal conditions to support NSCs growth and neuronal differentiation in vitro. The optimized hydrogel holds great potential as a carrier of stem cells to treat CNS injuries and diseases in which cell therapies may be essential.
-
Journal of neurotrauma · Aug 2014
Eotaxin-3 activates Smad through the TGF-β1 pathway in chronic subdural hematoma outer membranes.
Chronic subdural hematoma (CSDH) is considered to be an inflammatory disease. Eosinophils are frequently expressed in the outer membrane of CSDH and are major sources of transforming growth factor beta (TGF-β). The mothers against decapentaplegic (Smad)-signaling pathway, which is activated by TGF-β, has been shown to be involved with fibrosis. ⋯ Smad3 was shown to be present in fibroblasts. These findings indicate that eotaxin-3 is expressed in CSDH fluid, inducing eosinophils into the outer membrane and resulting in elevation of TGF-β with the Smad pathway activated by TGF-β. These data suggest a potential mechanism for CSDH formation and growth.
-
Journal of neurotrauma · Aug 2014
ReviewALTERATION IN SYNAPTIC JUNCTION PROTEINS FOLLOWING TRAUMATIC BRAIN INJURY.
Extensive research and scientific efforts have been focused on the elucidation of the pathobiology of cellular and axonal damage following traumatic brain injury (TBI). Conversely, few studies have specifically addressed the issue of synaptic dysfunction. ⋯ A Synapse Protein Database on synapse ontology identified 109 domains implicated in synaptic activities and over 5000 proteins, but few of these demonstrated to play a role in the synaptic dysfunction after TBI. These proteins are involved in neuroplasticity and neuromodulation and, most importantly, may be used as novel neuronal markers of TBI for specific intervention.
-
Journal of neurotrauma · Aug 2014
Therapeutic Effects of Pharmacologically induced Hypothermia against Traumatic Brain Injury in Mice.
Preclinical and clinical studies have shown therapeutic potential of mild-to-moderate hypothermia for treatments of stroke and traumatic brain injury (TBI). Physical cooling in humans, however, is usually slow, cumbersome, and necessitates sedation that prevents early application in clinical settings and causes several side effects. Our recent study showed that pharmacologically induced hypothermia (PIH) using a novel neurotensin receptor 1 (NTR1) agonist, HPI-201 (also known as ABS-201), is efficient and effective in inducing therapeutic hypothermia and protecting the brain from ischemic and hemorrhagic stroke in mice. ⋯ HPI-363 decreased the mRNA expression of tumor necrosis factor-α and interleukin-1β (IL-1β), but increased IL-6 and IL-10 levels. Compared with TBI control mice, HPI-363 treatments improved sensorimotor functional recovery after TBI. These findings suggest that the second generation NTR-1 agonists, such as HPI-363, are efficient hypothermic-inducing compounds that have a strong potential in the management of TBI.
-
Journal of neurotrauma · Aug 2014
Randomized Controlled TrialEffects of serotonergic medications on locomotor performance in humans with incomplete spinal cord injury.
Incomplete spinal cord injury (iSCI) often results in significant motor impairments that lead to decreased functional mobility. Loss of descending serotonergic (5HT) input to spinal circuits is thought to contribute to motor impairments, with enhanced motor function demonstrated through augmentation of 5HT signaling. However, the presence of spastic motor behaviors in SCI is attributed, in part, to changes in spinal 5HT receptors that augment their activity in the absence of 5HT, although data demonstrating motor effects of 5HT agents that deactivate these receptors are conflicting. ⋯ Results indicate that neither medication led to improvements in locomotion, with a significant decrease in peak overground gait speed observed after 5HT antagonists (from 0.8±0.1 to 0.7±0.1 m/s; p=0.01). Additionally, 5-HT medications had differential effects on EMG activity, with 5HT antagonists decreasing extensor activity and SSRIs increasing flexor activity. Our data therefore suggest that acute manipulation of 5HT signaling, despite changes in muscle activity, does not improve locomotor performance after iSCI.