Journal of neurotrauma
-
Journal of neurotrauma · Oct 2015
Sulfonylurea Receptor 1 in Humans with Post-Traumatic Brain Contusions.
Post-traumatic brain contusions (PTBCs) are traditionally considered primary injuries and can increase in size, generate perilesional edema, cause mass effect, induce neurological deterioration, and cause death. Most patients experience a progressive increase in pericontusional edema, and nearly half, an increase in the hemorrhagic component itself. The underlying molecular pathophysiology of contusion-induced brain edema and hemorrhagic progression remains poorly understood. ⋯ The temporal pattern depended on cell type: 1) In neurons, SUR1 increased within 48 h of injury and stabilized thereafter; 2) in ECs, there was no trend; 3) in glial cells and microglia/macrophages, a moderate increase was observed over time; and 4) in neutrophils, it decreased with time. Our results suggest that up-regulation of SUR1 in humans point to this channel as one of the important molecular players in the pathophysiology of PTBCs. Our findings reveal opportunities to act therapeutically on the mechanisms of growth of traumatic contusions and therefore reduce the number of patients with neurological deterioration and poor neurological outcomes.
-
Journal of neurotrauma · Oct 2015
MEG Slow-wave Detection in Patients with Mild Traumatic Brain Injury and Ongoing Symptoms Correlated with Long-Term Neuropsychological Outcome.
Mild traumatic brain injury (mTBI) is common in the United States, accounting for as many as 75-80% of all TBIs. It is recognized as a significant public health concern, but there are ongoing controversies regarding the etiology of persistent symptoms post-mTBI. This constellation of nonspecific symptoms is referred to as postconcussive syndrome (PCS). ⋯ In addition, significant correlations between slow-wave activity on MEG and patterns of cognitive functioning were found in cortical areas, consistent with cognitive impairments on exams. Results provide more objective evidence that there may be subtle changes to the neurobiological integrity of the brain that can be detected by MEG. Further, these findings suggest that these abnormalities are associated with cognitive outcomes and may account, at least in part, for long-term PCS in those who have sustained an mTBI.
-
Journal of neurotrauma · Oct 2015
Mildly Reduced Brain Swelling and Improved Neurological Outcome in Aquaporin-4 Knockout Mice Following Controlled Cortical Impact Brain Injury.
Brain edema following traumatic brain injury (TBI) is associated with considerable morbidity and mortality. Prior indirect evidence has suggested the involvement of astrocyte water channel aquaporin-4 (AQP4) in the pathogenesis of TBI. Here, focal TBI was produced in wild type (AQP4(+/+)) and knockout (AQP4(-/-)) mice by controlled cortical impact injury (CCI) following craniotomy with dura intact (parameters: velocity 4.5 m/sec, depth 1.7 mm, dwell time 150 msec). ⋯ Transmission electron microscopy showed reduced astrocyte foot-process area in AQP4(-/-) mice at 24 h after CCI, with greater capillary lumen area. Blood-brain barrier disruption assessed by Evans blue dye extravasation was similar in AQP4(+/+) and AQP4(-/-) mice. We conclude that the mildly improved outcome in AQP4(-/-) mice following CCI results from reduced cytotoxic brain water accumulation, though concurrent cytotoxic and vasogenic mechanisms in TBI make the differences small compared to those seen in disorders where cytotoxic edema predominates.
-
Chaperone-mediated autophagy (CMA) and the ubiquitin-proteasomal system (UPS) are two major protein degradation systems responsible for maintaining cellular homeostasis, but how these two systems are regulated after traumatic brain injury (TBI) remains unknown. TBI produces primary mechanical damage that must be repaired to maintain neuronal homeostasis. The level of lysosomal-associated membrane protein type 2A (LAMP2A) is the hallmark of CMA activity. ⋯ The increases in the levels of LAMP2A and 70 kDa heat-shock protein for CMA after TBI were seen mainly in the secondary lysosome-containing fractions. Confocal and electron microscopy further showed that increased LAMP2A or lysosomes were found mainly in neurons and proliferated microglia. Because CMA and the UPS are two major routes for elimination of different types of cellular aberrant proteins, the consecutive activation of these two pathways may serve as a protective mechanism for maintaining cellular homeostasis after TBI.
-
Journal of neurotrauma · Oct 2015
Characterization of Subcellular Responses Induced by Exposure of Microbubbles to Astrocytes.
Blast traumatic brain injury (bTBI) has now been identified to associate with adverse health consequences among combat veterans. Post-traumatic stress disorder linked with explosive blasts, for example, may result from such brain injury. The fundamental questions about the nature, diagnosis, and long-term consequences of bTBI and causative relationship to post-traumatic stress disorder remain elusive, however. ⋯ Of the cells that survived the initial assault, several subcellular changes were monitored and determined using fluorescent microscopy, including cell viability, cytoskeletal reorganization, changes in focal adhesion, membrane permeability, and potential onset of apoptosis. While the astrocytes impacted by the shock wave only demonstrated essentially unaltered cellular behavior, the astrocytes exposed to microbubbles exhibited significantly different responses, including production of reactive oxygen species by collapse of microbubbles. In the present study, we characterized and report for the first time the altered biophysical and subcellular properties in astrocytes in response to exposure to the combination of shock waves and microbubbles.