Journal of neurotrauma
-
Journal of neurotrauma · Nov 2016
Glucose-dependent insulinotropic polypeptide ameliorates mild traumatic brain injury-induced cognitive and sensorimotor deficits and neuroinflammation in rats.
Mild traumatic brain injury (mTBI) is a major public health issue, representing 75-90% of all cases of TBI. In clinical settings, mTBI, which is defined as a Glascow Coma Scale (GCS) score of 13-15, can lead to various physical, cognitive, emotional, and psychological-related symptoms. To date, there are no pharmaceutical-based therapies to manage the development of the pathological deficits associated with mTBI. ⋯ GIP was well tolerated and ameliorated mTBI-induced memory impairments, poor balance, and sensorimotor deficits after initiation in the post-injury period. In addition, GIP mitigated mTBI-induced neuroinflammatory changes on GFAP, APP, and BMX protein levels. These findings suggest GIP has significant benefits in managing mTBI-related symptoms and represents a novel strategy for mTBI treatment.
-
Journal of neurotrauma · Nov 2016
Tau oligomers derived from Traumatic Brain Injury cause cognitive impairment and accelerate onset of pathology in Htau mice.
Tau aggregation is a pathological feature of numerous neurodegenerative disorders and has also been shown to occur under certain conditions of traumatic brain injury (TBI). Currently, no effective treatments exist for the long-term effects of TBI. In some cases, TBI not only induces cognitive changes immediately post-injury, but also leads to increased incidence of neurodegeneration later in life. ⋯ Additionally, these oligomers accelerated onset of cognitive deficits when injected into brains of Htau mice. Tau oligomer levels increased in the hippocampal injection sites and cerebellum, suggesting that tau oligomers may be responsible for seeding the spread of pathology post-TBI. Our results suggest that tau oligomers play an important role in the toxicity underlying TBI and may be a viable therapeutic target.
-
Journal of neurotrauma · Nov 2016
Multicenter StudyLoss of Consciousness is Related to White Matter Injury in Mild Traumatic Brain Injury.
To study the relation of loss of consciousness (LOC) to white matter integrity after mild traumatic brain injury (mTBI), we acquired diffusion tensor imaging (DTI) at 3 Tesla in 79 participants with mTBI and normal computed tomography (age 18 to 50 years) whom we imaged after a mean post-injury interval of 25.9 h (standard deviation = 12.3) and at 3 months. For comparison, 64 participants with orthopedic injury (OI) underwent DTI at similar intervals. Quantitative tractography was used to measure fractional anisotropy (FA) and mean diffusivity (MD) in the left and right uncinate fasciculus (UF), left and right inferior frontal occipital fasciculus (IFOF), and the genu of the corpus callosum. ⋯ Early DTI may provide a biomarker for mTBI with LOC, even in patients whose consciousness recovers by arrival in the emergency department. MD better differentiates mTBI from OI than FA on early DTI, but this is specific to mTBI with LOC. DTI findings support a continuum of white matter injury in early mTBI.
-
Journal of neurotrauma · Nov 2016
Multicenter StudySerum tau fragments predict return to play in concussed professional ice hockey players.
The diagnosis of sports-related concussion is mainly based on subjective clinical symptoms and neuropsychological tests. Therefore, reliable brain injury biomarkers to assess when it is safe to return to play are highly desirable. The overall objective of this study was to evaluate the utility of two newly described tau fragments for diagnosis and prognosis of sports-related concussions. ⋯ However, serum levels of Tau-C were significantly higher in post-concussion samples compared with preseason. Further, levels of Tau-A correlated with the duration of post-concussive symptoms. Tau-A in serum, which is newly discovered biomarker, could be used to predict when it is safe to return to play after a sports-related concussion.
-
Several behavioral factors such as violence, impulsivity, and alcohol-related problems are associated with traumatic spinal cord injury (TSCI). Such factors have been associated with inherently low neuronal serotonergic capacity that in turn is reflected in low activity of monoamine oxidase (MAO) as measured in platelets. The aim of the study was to characterize platelet MAO activity and impulsivity in persons with TSCI. ⋯ The patients with TSCI had significantly higher BIS-11 impulsivity compared with the controls (62.8 ± 10.0 vs. 55.4 ± 8.6, p = 0.0001). The patients with TSCI have lower platelet MAO activity, and they are more impulsive compared with the healthy controls. Our results indicate that both low platelet MAO activity and high impulsivity are important risk factors for TSCI that can have predictive value and aid in undertaking preventive measures.