Journal of neurotrauma
-
Journal of neurotrauma · Jun 2016
EARLY DECOMPRESSION FOLLOWING CERVICAL SPINAL CORD INJURY: EXAMINING THE PROCESS OF CARE FROM ACCIDENT SCENE TO SURGERY.
Early decompression may improve neurological outcome after spinal cord injury (SCI), but is often difficult to achieve because of logistical issues. The aims of this study were to 1) determine the time to decompression in cases of isolated cervical SCI in Australia and New Zealand and 2) determine where substantial delays occur as patients move from the accident scene to surgery. Data were extracted from medical records of patients aged 15-70 years with C3-T1 traumatic SCI between 2010 and 2013. ⋯ In conclusion, the time of cervical spine decompression markedly improved over the study period. Neurological recovery appeared to be promoted by rapid decompression. Direct surgical hospital admission, rapid organization of theater, and where possible, use of closed reduction, are likely to be effective strategies to reduce the time to decompression.
-
Journal of neurotrauma · Jun 2016
Bone Marrow Stromal Cell Intraspinal Transplants Fail to Improve Motor Outcomes in a Severe Model of Spinal Cord Injury.
Bone marrow stromal cells (BMSCs) have been reported to exert potential neuroprotective properties in models of neurotrauma, although precise mechanisms underlying their benefits are poorly understood. Despite this lack of knowledge, several clinical trials have been initiated using these cells. To determine whether local mechanisms mediate BMSC neuroprotective actions, we grafted allogeneic BMSCs to sites of severe, compressive spinal cord injury (SCI) in Sprague-Dawley rats. ⋯ When assessed 2 months post-injury in a clinically relevant model of severe SCI, BMSC grafts with or without BDNF secretion failed to improve motor outcomes. Thus, allogeneic grafts of BMSCs do not appear to act through local mechanisms, and future clinical trials that acutely deliver BMSCs to actual sites of injury within days are unlikely to be beneficial. Additional studies should address whether systemic administration of BMSCs alter outcomes from neurotrauma.
-
Journal of neurotrauma · Jun 2016
Mechanical design and analysis of a unilateral cervical spinal cord contusion injury model in non-human primates.
Non-human primate (NHP) models of spinal cord injury better reflect human injury and provide a better foundation to evaluate potential treatments and functional outcomes. We combined finite element (FE) and surrogate models with impact data derived from in vivo experiments to define the impact mechanics needed to generate a moderate severity unilateral cervical contusion injury in NHPs (Macaca mulatta). Three independent variables (impactor displacement, alignment, and pre-load) were examined to determine their effects on tissue level stresses and strains. ⋯ Surrogate cords established a 0.5 N pre-load protocol for positioning the impactor tip onto the dural surface to define a consistent dorsoventral baseline position before impact, which corresponded with cerebrospinal fluid displacement and entrapment of the spinal cord against the vertebral canal. Based on our simulations, impactor alignment and pre-load were strong contributors to the variable mechanical and functional outcomes observed in in vivo experiments. Peak displacement of 4 mm after a 0.5N pre-load aligned 0.5-1.0 mm over the midline should result in a moderate severity injury; however, the observed peak force and calculated peak energy and tissue stiffness are required to properly characterize the severity and variability of in vivo NHP contusion injuries.
-
Journal of neurotrauma · Jun 2016
A soluble activin receptor IIB fails to prevent muscle atrophy in a mouse model of spinal cord injury.
Myostatin (MST) is a potent regulator of muscle growth and size. Spinal cord injury (SCI) results in marked atrophy of muscle below the level of injury. Currently, there is no effective pharmaceutical treatment available to prevent sublesional muscle atrophy post-SCI. ⋯ RAP-031 did not influence cytokine expression. Bone mineral density of the distal femur and proximal tibia were decreased post-SCI (-26% and -28%, respectively) and were not altered by RAP-031. In conclusion, MST inhibition increased supralesional muscle mass, but did not prevent sublesional muscle or bone loss, or the inflammation in paralyzed muscle.
-
Journal of neurotrauma · Jun 2016
Production of dopamine by aromatic L-amino acid decarboxylase cells after spinal cord injury.
Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. ⋯ These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease.