Journal of neurotrauma
-
Journal of neurotrauma · Jun 2016
Contusion contrast extravasation depicted on multidetector computed tomography angiography predicts growth and mortality in traumatic brain contusion.
Traumatic brain injury (TBI) is the main cause of death in trauma victims and causes high rates of disability and neurological sequelae. Approximately 38-65% of traumatic brain contusions (TBC) demonstrate hemorrhagic expansion on serial computed tomography (CT) scans. Thus far, however, no single variable can accurately predict the hemorrhage expansion of a TBC. ⋯ In addition, expansion of the hemorrhagic component of the TBC was detected in 61.1% of the CE-positive patients, whereas expansion was only observed in 10% of the CE-negative patients (p < 0.001). Poor outcome was observed in 24.2% of the patients in the CE-negative group, but in the presence of CE, 72.7% evolved with poor outcome (p < 0.001). The CE was a strong independent predictor of expansion, poor outcome, and increased risk of in-hospital mortality in our series of patients with TBC.
-
Journal of neurotrauma · Jun 2016
Neuropsychological, metabolic, and GABAA receptor studies in subjects with repetitive traumatic brain injury.
Repetitive traumatic brain injury (rTBI) occurs as a result of mild and accumulative brain damage. A prototype of rTBI is chronic traumatic encephalopathy (CTE), which is a degenerative disease that occurs in patients with histories of multiple concussions or head injuries. Boxers have been the most commonly studied patient group because they may experience thousands of subconcussive hits over the course of a career. ⋯ Glucose metabolism was impaired in frontal areas associated with cognitive dysfunction, similar to findings in Alzheimer's disease. Low binding potential (BP) of (18)F-flumazenil (FMZ) was found in the angular gyrus and temporal cortical regions, revealing neuronal deficits. These results suggested that cognitive impairment and motor dysfunction reflect chronic damage to neurons in professional boxers with rTBI.
-
Journal of neurotrauma · Jun 2016
Fractalkine receptor deficiency is associated with early protection, but late worsening of outcome following brain trauma in mice.
An impaired ability to regulate microglia activation by fractalkine (CX3CL1) leads to microglia chronic sub-activation. How this condition affects outcome after acute brain injury is still debated, with studies showing contrasting results depending on the timing and the brain pathology. Here, we investigated the early and delayed consequences of fractalkine receptor (CX3CR1) deletion on neurological outcome and on the phenotypical features of the myeloid cells present in the lesions of mice with traumatic brain injury (TBI). ⋯ Gene expression on CD11b(+) sorted cells revealed an increase of interleukin 10 and insulin-like growth factor 1 (IGF1) at 1 day and a decrease of IGF1 4 days and 5 weeks post-TBI in CX3CR1(-/-), compared with WT mice. These data show an early protection followed by a chronic exacerbation of TBI outcome in the absence of CX3CR1. Thus, longitudinal effects of myeloid cell manipulation at different stages of pathology should be investigated to understand how and when their modulation may offer therapeutic chances.