Journal of neurotrauma
-
Journal of neurotrauma · Jul 2016
Time Course and Size of Blood-Brain Barrier Opening in a Mouse Model of Blast-Induced Traumatic Brain Injury.
An increasing number of studies have reported blood-brain barrier (BBB) dysfunction after blast-induced traumatic brain injury (bTBI). Despite this evidence, there is limited quantitative understanding of the extent of BBB opening and the time course of damage after blast injury. In addition, many studies do not report kinematic parameters of head motion, making it difficult to separate contributions of primary and tertiary blast-loading. ⋯ Exposure to blast with 272 ± 6 kPa peak overpressure, 0.69 ± 0.01 ms duration, and 65 ± 1 kPa*ms impulse resulted in significant acute extravasation of NaFl, 3 kDa dextran, and EB. However, there was no significant acute extravasation of 70 kDa or 500 kDa dextrans, and minimal to no extravasation of NaFl, dextrans, or EB 1 day after exposure. This study presents a detailed analysis of the time course and pore size of BBB opening after bTBI, supported by a characterization of kinematic parameters associated with blast-induced head motion.
-
Journal of neurotrauma · Jul 2016
Novel rat model of weight drop-induced closed diffuse traumatic brain injury compatible with electrophysiological recordings of vigilance states.
Traumatic brain injury (TBI) is a major cause of persistent disabilities such as sleep-wake disorders (SWD). Rodent studies of SWD after TBI are scarce, however, because of lack of appropriate TBI models reproducing acceleration-deceleration forces and compatible with electroencephalography/myography (EEG/EMG)-based recordings of vigilance states. We therefore adapted the Marmarou impact acceleration model to allow for compatibility with EEG-headset implantation. ⋯ EEG implants were stable for at least 1 month and enabled qualitative and quantitative sleep analyses. Histological assessments revealed no major bleedings or necrosis but intense diffuse axonal damage after TBI. This approach fulfills major pre-conditions for experimental TBI models and offers a possibility to electrophysiologically study behavioral states before and after trauma.
-
Journal of neurotrauma · Jul 2016
High Fidelity Simulation of Primary Blast: Direct Effects on the Head.
The role of primary blast in blast-induced traumatic brain injury (bTBI) is controversial in part due to the technical difficulties of generating free-field blast conditions in the laboratory. The use of traditional shock tubes often results in artifacts, particularly of dynamic pressure, whereas the forces affecting the head are dependent on where the animal is placed relative to the tube, whether the exposure is whole-body or head-only, and on how the head is actually exposed to the insult (restrained or not). An advanced blast simulator (ABS) has been developed that enables high-fidelity simulation of free-field blastwaves, including sharply defined static and dynamic overpressure rise times, underpressures, and secondary shockwaves. ⋯ In contrast to most studies of primary blast-induced TBI (PbTBI), no elevation of glial fibrillary acidic protein (GFAP) levels was noted when head movement was minimized. The ABS described in this article enables the generation of shockwaves highly representative of free-field blast. The use of this technology, in concert with head-only exposure, minimized head movement, and the kinematic analysis of the forces exerted on the head provide convincing evidence that primary blast directly causes changes in brain function and that GFAP may not be an appropriate biomarker of PbTBI.
-
The objective of this study was to determine whether clinically significant ocular trauma can be induced by a survivable isolated primary blast using a live animal model. Both eyes of 18 Dutch Belted rabbits were exposed to various survivable low-level blast overpressures in a large-scale shock tube simulating a primary blast similar to an improvised explosive device. Eyes of the blast-exposed rabbits (as well as five control rabbits) were thoroughly examined before and after blast to detect changes. ⋯ Retinal thickness (RT) increased with increasing specific impulse immediately after exposure. Intraocular pressure (IOP) was inversely correlated with the specific impulse of the blast wave. These findings clearly indicate that survivable primary blast causes ocular injuries with likely visual functional sequelae of clinical and military relevance.
-
Journal of neurotrauma · Jul 2016
Multicenter Study Observational StudyPlasma Anti-Glial Fibrillary Acidic Protein (GFAP) Autoantibody Levels During the Acute and Chronic Phases of Traumatic Brain Injury - A TRACK-TBI Pilot Study.
We described recently a subacute serum autoantibody response toward glial fibrillary acidic protein (GFAP) and its breakdown products 5-10 days after severe traumatic brain injury (TBI). Here, we expanded our anti-GFAP autoantibody (AutoAb[GFAP]) investigation to the multicenter observational study Transforming Research and Clinical Knowledge in TBI Pilot (TRACK-TBI Pilot) to cover the full spectrum of TBI (Glasgow Coma Scale 3-15) by using acute (<24 h) plasma samples from 196 patients with acute TBI admitted to three Level I trauma centers, and a second cohort of 21 participants with chronic TBI admitted to inpatient TBI rehabilitation. We find that acute patients self-reporting previous TBI with loss of consciousness (LOC) (n = 43) had higher day 1 AutoAb[GFAP] (mean ± standard error: 9.11 ± 1.42; n = 43) than healthy controls (2.90 ± 0.92; n = 16; p = 0.032) and acute patients reporting no previous TBI (2.97 ± 0.37; n = 106; p < 0.001), but not acute patients reporting previous TBI without LOC (8.01 ± 1.80; n = 47; p = 0.906). ⋯ AutoAb[GFAP] levels for participants with chronic TBI (average post-TBI time 176 days or 6.21 months) were also significantly higher (15.08 ± 2.82; n = 21) than healthy controls (p < 0.001). These data suggest a persistent upregulation of the autoimmune response to specific brain antigen(s) in the subacute to chronic phase after TBI, as well as after repeated TBI insults. Hence, AutoAb[GFAP] may be a sensitive assay to study the dynamic interactions between post-injury brain and patient-specific autoimmune responses across acute and chronic settings after TBI.