Journal of neurotrauma
-
Journal of neurotrauma · Jan 2017
Long-term motor deficits after controlled cortical impact in rats can be detected by fine motor skill tests but not by automated gait analysis.
Animal models with constant, long-lasting motor deficits together with the right tests to assess behavioral abnormalities are needed to study the effectiveness of potential therapies to restore motor functions. In the current study, controlled cortical impact (CCI) was applied in rats to induce damage to the forelimb area of the motor cortex and the dorsal striatum. ⋯ In striking contrast to previous studies on CCI in mice, neither forelimb impairments, nor general changes in gait, were detected with the CatWalk XT. These data suggest that the adhesive removal test, the cylinder test, and the Montoya staircase test are the methods of choice to detect long-term unilateral motor deficits in rats after CCI, whereas the use of automated gait analysis systems might not be suitable to measure these behavioral deviations.
-
Journal of neurotrauma · Jan 2017
Early changes in cortical emotion processing circuits after mild traumatic brain injury following motor vehicle collision.
Mild traumatic brain injury (mTBI) patients frequently experience emotion dysregulation symptoms, including post-traumatic stress. Although mTBI likely affects cortical activation and structure, resulting in cognitive symptoms after mTBI, early effects of mTBI on cortical emotion processing circuits have rarely been examined. To assess early mTBI effects on cortical functional and structural components of emotion processing, we assessed cortical activation to fearful faces within the first 2 weeks after motor vehicle collision (MVC) in survivors who did and did not experience mTBI. ⋯ SPG activation in mTBI survivors within 2 weeks after MVC was negatively correlated with subsequent post-traumatic stress symptom severity at 3 months (r = -0.68, p = 0.03). Finally, the SPG region was thinner in the mTBI survivors than in the non-mTBI survivors (F = 11.07, p = 0.002). These results suggest that early differences in activation and structure in cortical emotion processing circuits in trauma survivors who sustain mTBI may contribute to the development of emotion-related symptoms.
-
Journal of neurotrauma · Jan 2017
Lack of influence of APoE status on cognition or brain structure in professional fighters.
The role of the apolipoprotein e4 allele in moderating cognitive and neuroanatomical degeneration following repeated traumatic brain injury is controversial. Here we sought to establish the presence or absence of such a moderating relationship in a prospective study of active and retired boxers and mixed martial arts fighters. ⋯ No moderating relationship was detected in any of the analyses. The results of this study suggest that there is no impact of apolipoprotein genotype on the apparent negative association between exposure to professional fighting and brain structure volume or aspects of cognition.
-
Journal of neurotrauma · Jan 2017
Adolescent Mice Demonstrate a Distinct Pattern of Injury after Repetitive Mild Traumatic Brain Injury.
Recently, there has been increasing interest in outcomes after repetitive mild traumatic brain injury (rmTBI) (e.g., sports concussions). Although most of the scientific attention has focused on elite athlete populations, the sequelae of rmTBI in children and young adults have not been well studied. Prior TBI studies have suggested that developmental differences in response to injury, including differences in excitotoxicity and inflammation, could result in differences in functional and histopathological outcomes after injury. ⋯ Three months after injury, adolescent and adult mice demonstrated increased ionized calcium binding adaptor 1 (IbA1) immunolabeling compared with sham controls. Compared with sham controls, NMDA receptor subtype 2B (NR2B) expression in the hippocampus was reduced by ∼20% in both adolescent and adult injured mice. The data suggest that injured adolescent mice may show a distinct pattern of functional deficits after injury that warrants further mechanistic studies.
-
Journal of neurotrauma · Jan 2017
Combining the antipsychotic drug haloperidol and environmental enrichment after traumatic brain injury is a double-edged sword.
Environmental enrichment (EE) confers significant benefits after experimental traumatic brain injury (TBI). In contrast, the antipsychotic drug (APD) haloperidol (HAL) exerts deleterious effects on neurobehavioral and cognitive recovery. Neurorehabilitation and management of agitation, however, are integral components of the treatment strategy for patients with TBI. ⋯ What was surprising was that the therapeutic effects of EE were greatly reduced by concomitant administration of HAL. No differences in cortical lesion volumes were observed among the groups (p > 0.05). The potential clinical implications of these findings suggest that administering HAL to patients undergoing neurorehabilitation may be a double-edged sword because agitation must be controlled before rehabilitation can be safely initiated and executed, but its use may compromise therapeutic efficacy.