Journal of neurotrauma
-
Journal of neurotrauma · Mar 2017
Cognitive impairment and mood states following spinal cord injury.
Spinal cord injury (SCI) is believed to be associated with high rates of cognitive impairment, which can result in complications in recovery. This study concerned two groups of adults with SCI. The first sample involved 150 participants with SCI who were assessed once for cognitive capacity with comparisons made with 45 able-bodied adults. ⋯ Results from Sample 2 revealed that the development of negative mood states was a significant problem in those with cognitive impairment after they transitioned into the community, a time when personal resources are severely challenged. Findings suggest all adults with SCI admitted to rehabilitation should receive a cognitive screen, and that rehabilitation strategies should then be guided by the cognitive performance of the person. Special attention should also be given to improving skills of those with cognitive impairment before they transition into the community, so as to reduce risk of comorbid mental health problems.
-
Journal of neurotrauma · Mar 2017
RNA binding protein HuR is Translocated in Astrocytes Following Spinal Cord Injury and Promotes the Inflammatory Response.
Inflammation plays a prominent role in the events following traumatic injury to the central nervous system (CNS). The initial inflammatory response is driven by mediators such as tumor necrosis factor α and interleukin 1β, which are produced by activated astrocytes and microglia at the site of injury. These factors are regulated post-transcriptionally by RNA binding proteins (RBP) that interact with adenylate and uridylate-rich elements (ARE) in the 3'-untranslated region of the messenger RNA (mRNA). ⋯ A small molecule inhibitor of HuR suppressed cytokine induction of injured astrocytes and reduced chemoattraction for neutrophils and microglia. In summary, HuR is activated in astrocytes in the early stages of CNS trauma and positively regulates the molecular response of key inflammatory mediators in astrocytes. Our findings suggest that HuR may be a therapeutic target in acute CNS trauma for blunting secondary tissue injury triggered by the inflammatory response.
-
Journal of neurotrauma · Mar 2017
Multi-day recordings of wearable sensors are valid and sensitive measures of function and independence in human spinal cord injury.
Wearable sensor assessment tools have proven to be reliable in measuring function in normal and impaired movement disorders during well-defined assessment protocols. While such assessments can provide valid and sensitive measures of upper limb activity in spinal cord injury (SCI), no assessment tool has yet been introduced into unsupervised daily recordings to complement clinical assessments during rehabilitation. The objective of this study was to measure the overall amount of upper-limb activity in subjects with acute SCI using wearable sensors and relate this to lesion characteristics, independence, and function. ⋯ Compared with paraplegics, tetraplegics showed significantly lower activity counts and increased limb-use laterality. This is the first cross-sectional study showing the feasibility and clinical value of sensor recordings during unsupervised daily activities in rehabilitation. The strong relationship between sensor-based measures and clinical outcomes supports the application of such technology to assess and track changes in function during rehabilitation and in clinical trials.
-
Journal of neurotrauma · Mar 2017
High-intensity locomotor exercise increases brain-derived neurotrophic factor in individuals with incomplete spinal cord injury.
High-intensity locomotor exercise is suggested to contribute to improved recovery of locomotor function after neurological injury. This may be secondary to exercise-intensity-dependent increases in neurotrophin expression demonstrated previously in control subjects. However, rigorous examination of intensity-dependent changes in neurotrophin levels is lacking in individuals with motor incomplete spinal cord injury (SCI). ⋯ Significant correlations were observed between changes in BDNF and specific indicators of exercise intensity (e.g., rating of perceived exertion; R = 0.43; p = 0.02). Additionally, the data suggest that Val66Met SNP carriers may not exhibit intensity-dependent changes in serum BDNF concentration. Given the known role of BDNF in experience-dependent neuroplasticity, these preliminary results suggest that exercise intensity modulates serum BDNF concentrations and may be an important parameter of physical rehabilitation interventions after neurological injury.
-
Journal of neurotrauma · Mar 2017
NorBNI blocks the adverse effects of morphine following spinal cord injury.
Opioids are frequently used for the treatment of pain following spinal cord injury (SCI). Unfortunately, we have shown that morphine administered in the acute phase of SCI results in significant, adverse secondary consequences including compromised locomotor and sensory recovery. Similarly, we showed that selective activation of the κ-opioid receptor (KOR), even at a dose 32-fold lower than morphine, is sufficient to attenuate recovery of locomotor function. ⋯ This suggests that activation of the KOR system plays a significant role in the morphine-induced attenuation of recovery. Our research suggests that morphine, and other opioid analgesics, may be contraindicated for the SCI population. Blocking KOR activity may be a viable strategy for improving the safety of clinical opioid use.