Journal of neurotrauma
-
Journal of neurotrauma · Mar 2017
Spinal cord injury suppresses cutaneous inflammation: implications for peripheral wound healing.
People who suffer a traumatic spinal cord injury (SCI) are at increased risk for developing dermatological complications. These conditions increase cost of care, incidence of rehospitalization, and the risk for developing other infections. The consequences of dermatological complications after SCI are likely exacerbated further by post-injury deficits in neural-immune signaling. ⋯ Radiant efficiency data were confirmed using magnetic resonance imaging (MRI), and together the data indicate that SCI significantly impairs subcutaneous inflammation. Future studies should determine whether enhancing local inflammation or boosting systemic immune function can improve the rate or efficiency of cutaneous wound healing in individuals with SCI. Doing so also could limit wound infections or secondary complications of impaired healing after SCI.
-
Journal of neurotrauma · Mar 2017
2015 ParaPan American Games: Autonomic function, but not physical activity, is associated with vascular-cognitive impairment in spinal cord injury.
Autonomic dysfunction and diminished capacity for physical exercise are commonly implicated in the 3- to 4-fold increased risk of cerebrovascular disease after spinal cord injury (SCI). We assessed cerebrovascular function (transcranial Doppler; neurovascular coupling [NVC], and cerebral pressure-flow regulation) in elite national level wheelchair rugby players (n = 23), normally active SCI individuals (n = 12), and able-bodied controls (n = 13). Cognitive (Stroop test) and autonomic function (postural change) also were evaluated. ⋯ Autonomic dysfunction but not physical activity was related to impaired NVC and cerebral pressure-flow regulation after SCI. Routine upper-body exercise, as utilized by elite wheelchair rugby athletes, may not elicit beneficial cerebrovascular effects. On the other hand, autonomic dysfunction needs to be considered a key culprit in cerebrovascular diseases after SCI.
-
Journal of neurotrauma · Mar 2017
Mean arterial blood pressure management of acute spinal cord injured patients during the pre-hospital and early admission period.
The optimization and maintenance of mean arterial blood pressure (MAP) and the general avoidance of systemic hypotension for the first 5-7 days following acute traumatic spinal cord injury (tSCI) is considered to be important for minimizing secondary spinal cord ischemic damage. The characterization of hemodynamic parameters in the immediate post-injury stage prior to admission to a specialized spine unit has not been previously reported. Here we describe the blood pressure management of 40 acute tSCI patients in the early post-injury phases of care prior to their arrival in a specialized spinal injury high dependency unit (HDU), intensive care unit (ICU), or operating room (OR). ⋯ Despite having a mean calculated MAP of 83.3 mm Hg in the emergency room of the tertiary hospital, 40% of the MAP measurements were <80 mm Hg. Although stringent monitoring and management of MAP may be facilitated and adhered to in a spinal HDU, ICU, or OR, it is important to recognize that acute traumatic SCI patients may experience many periods of relative hypotension prior to their arrival in such specialized units. This study highlights the need for education and awareness to optimize the hemodynamic management of acute SCI patients during the immediate post-injury period.
-
Journal of neurotrauma · Mar 2017
Evaluation of whole-brain resting-state functional connectivity in spinal cord injury - a large-scale network analysis using network based statistic.
Large-scale network analysis characterizes the brain as a complex network of nodes and edges to evaluate functional connectivity patterns. The utility of graph-based techniques has been demonstrated in an increasing number of resting-state functional MRI (rs-fMRI) studies in the normal and diseased brain. However, to our knowledge, graph theory has not been used to study the reorganization pattern of resting-state brain networks in patients with traumatic complete spinal cord injury (SCI). ⋯ Upon further examination, increased connectivity was observed in a subnetwork of the sensorimotor cortex and cerebellum network in SCI. In conclusion, our findings emphasize the applicability of NBS to study functional connectivity architecture in diseased brain states. Further, we show reorganization of large-scale resting-state brain networks in traumatic SCI, with potential prognostic and therapeutic implications.
-
Journal of neurotrauma · Mar 2017
Activation of KCNQ channels suppresses spontaneous activity in DRG neurons and reduces chronic pain after spinal cord injury.
A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. ⋯ These results encourage the further exploration of U. S. Food and Drug Administration-approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects.