Journal of neurotrauma
-
Journal of neurotrauma · Mar 2017
[18F]FDG-PET Combined with MRI Elucidates the Pathophysiology of Traumatic Brain Injury in Rats.
Non-invasive measurements of brain metabolism using 18F-fluorodeoxyglucose (FDG) with positron emission tomography (PET) may provide important information about injury severity following traumatic brain injury (TBI). There is growing interest in the potential of combining functional PET imaging with anatomical and functional magnetic resonance imaging (MRI). This study aimed to investigate the effectiveness of combining clinically available FDG-PET with T2 and diffusion MR imaging, with a particular focus on inflammation and the influence of glial alterations after injury. ⋯ Glial activation was not detected in the amygdala but neuronal damage was evident, as the amygdala was the only region to show a reduction in both FDG uptake and ADC at sub-acute time-points. Overall, FDG-PET detected glial activation but was confounded by the presence of cell damage, whereas MRI consistently detected cell damage but was confounded by glial activation. These results demonstrate that FDG-PET and MRI can be used together to improve our understanding of the complex alterations in the brain after TBI.
-
Journal of neurotrauma · Mar 2017
Detection of Mild Traumatic Brain Injury by Machine Learning Classification using Resting State Functional Network Connectivity and Fractional Anisotropy.
Traumatic brain injury (TBI) may adversely affect a person's thinking, memory, personality, and behavior. While mild TBI (mTBI) diagnosis is challenging, there is a risk for long-term psychiatric, neurologic, and psychosocial problems in some patients that motivates the search for new and better biomarkers. Recently, diffusion magnetic resonance imaging (dMRI) has shown promise in detecting mTBI, but its validity is still being investigated. ⋯ A t test analysis revealed significant increase in rsFNC between cerebellum versus sensorimotor networks and between left angular gyrus versus precuneus in subjects with mTBI. These outcomes suggest that inclusion of both common and unique information is important for classification of mTBI. Results also suggest that rsFNC can yield viable biomarkers that might outperform dMRI and points to connectivity to the cerebellum as an important region for the detection of mTBI.
-
Journal of neurotrauma · Mar 2017
Resuscitation with pooled and pathogen-reduced plasma attenuates the increase in brain water content following traumatic brain injury and hemorrhagic shock in rats.
Traumatic brain injury and hemorrhagic shock is associated with blood-brain barrier (BBB) breakdown and edema formation. Recent animal studies have shown that fresh frozen plasma (FFP) resuscitation reduces brain swelling and improves endothelial function compared to isotonic NaCl (NS). The aim of this study was to investigate whether pooled and pathogen-reduced plasma (OctaplasLG® [OCTA]; Octapharma, Stockholm, Sweden) was comparable to FFP with regard to effects on brain water content, BBB permeability, and plasma biomarkers of endothelial glycocalyx shedding and cell damage. ⋯ Plasma osmolality and oncotic pressures were highest in FFP and OCTA resuscitated, and osmolality was further highest in OCTA versus FFP (p = 0.027). In addition, syndecan-1 was highest in FFP and OCTA resuscitated (p = 0.010). These results suggest that pooled solvent-detergent (SD)-treated plasma attenuates the post-traumatic increase in brain water content, and that this effect may, in part, be explained by a high crystalloid and colloid osmotic pressure in SD-treated plasma.
-
Journal of neurotrauma · Mar 2017
Regional grey matter volume loss is associated with gait impairments in young brain-injured individuals.
Traumatic brain injury (TBI) often leads to impairments in gait performance. However, the underlying neurostructural pathology of these gait deficits is poorly understood. We aimed to investigate regional gray matter (GM) volume in young moderate-to-severe TBI participants (n = 19; age 13 years 11 months ±3 years 1 month), compared with typically developing (TD) participants (n = 30; 14 years 10 months ±2 years 2 months), and assess whether reduced volume was related to impaired gait performance in TBI participants. ⋯ Moreover, in the TBI group, volume losses in subcortical ROIs were highly inter-correlated, indicating that atrophy tends to occur in combined subcortical structures. Finally, it was demonstrated, for the first time, that gait abnormalities in TBI subjects were associated with reduced volume in specific GM structures, including the hippocampus, thalamus, and the cerebellar, superior frontal, paracentral, posterior cingulate, and superior parietal cortices. The present study is an important first step in the understanding of the neurostructural pathology underlying impaired gait in TBI patients.
-
Journal of neurotrauma · Mar 2017
Acute cortical transhemispheric diaschisis after unilateral traumatic brain injury.
Focal neocortical brain injuries lead to functional alterations, which can spread beyond lesion-neighboring brain areas. The undamaged hemisphere and its associated disturbances after a unilateral lesion, so-called transhemispheric diaschisis, have been progressively disclosed over the last decades; they are strongly involved in the pathophysiology and, potentially, recovery of brain injuries. Understanding the temporal dynamics of these transhemispheric functional changes is crucial to decipher the role of the undamaged cortex in the processes of functional reorganization at different stages post-lesion. ⋯ This abnormal excitable state in the intact hemisphere was not accompanied by alterations in neuronal intrinsic properties, but it was associated with an impairment of the phasic gamma aminobutyric acid (GABA)ergic transmission and an increased expression of GABAA receptor subunits related to tonic inhibition exclusively in the contralateral hemisphere. These data unravel a series of early transhemispheric functional alterations after diffuse unilateral cortical injury, which may compensate and stabilize the disrupted brain functions. Therefore, our findings support the hypothesis that the undamaged hemisphere could play a significant role in early functional reorganization processes after a TBI.