Journal of neurotrauma
-
Journal of neurotrauma · May 2017
Review Meta AnalysisEffects of Activity-based therapy interventions on mobility, independence and quality of life for people with spinal cord injuries: a systematic review and meta-analysis.
The aim of this study was to review the literature about the effects of activity-based therapy (ABT) interventions on mobility, functional independence, and quality of life for people with a spinal cord injury (SCI). A systematic review with meta-analysis of randomized and non-randomized trials was performed, including adults with a non-progressive SCI at any level. The intervention of interest was ABT, defined as any intervention that sought to improve muscle activation or sensory function below the level of injury in the spinal cord and does not rely on compensatory mechanisms for improving function. ⋯ Compared with conventional physical interventions, there was no significant effect of ABT on lower limb mobility, independence, or quality of life; however, it had positive effects on upper limbs. In conclusion, there is evidence that ABT can improve independence and functional ability when applied to the upper limbs in people with SCI. However, it is not superior to conventional physical interventions when applied to the lower limbs.
-
Journal of neurotrauma · May 2017
ReviewWhat did we learn from the animal studies of body weight supported treadmill training and where do we go from here?
Body weight-supported treadmill training (BWSTT) developed from animal studies of spinal cord injury (SCI). Evidence that spinal cats (i.e., cats that have a complete surgical transection of the cord) could regain the ability to step on a moving treadmill indicated a vast potential for spinal circuits to generate walking without the brain. BWSTT represented a means to unlock that potential. ⋯ Also discussed are more recent studies that have introduced new strategies and tools that adapt BWSTT ideas to more functionally-relevant tasks. We introduce a new device for weight-supported overground walking in rats called Circular BART (Body weight supported Ambulatory Rat Trainer) and demonstrate that it is relatively easy and inexpensive to produce. Future animal studies will benefit from the development of simple tools that facilitate training and testing of overground walking.
-
Journal of neurotrauma · May 2017
ReviewSUPRASPINAL CONTROL PREDICTS LOCOMOTOR FUNCTION AND FORECASTS RESPONSIVENESS TO TRAINING AFTER SPINAL CORD INJURY.
Restoration of walking ability is an area of great interest in the rehabilitation of persons with spinal cord injury. Because many cortical, subcortical, and spinal neural centers contribute to locomotor function, it is important that intervention strategies be designed to target neural elements at all levels of the neuraxis that are important for walking ability. While to date most strategies have focused on activation of spinal circuits, more recent studies are investigating the value of engaging supraspinal circuits. ⋯ A number of clinical prediction rules and association models based on common clinical measures have been developed with the intent, respectively, to predict future walking function based on early clinical presentation, and to delineate characteristics associated with responsiveness to training. Further, a number of variables that are correlated with walking function have been identified. Not surprisingly, most of these prediction rules, association models, and correlated variables incorporate measures of volitional lower extremity strength, illustrating the important influence of supraspinal centers in the production of walking behavior in humans.
-
Journal of neurotrauma · May 2017
ReviewFrom the rodent spinal cord injury model to human application: Promises and challenges.
Repair of the spinal cord and improvement of mobility after injury has been a matter of basic and clinical research for several decades. A number of repair approaches were performed in animals, mainly rodent models of spinal cord injury (SCI). Some of these experimental therapies resulted in significant regeneration of tract fibers, formation of new connections and circuits, and associated improvement of mobility. ⋯ In this article the present state of the art in the field of SCI research will be discussed. Studies dealing with the promotion of spinal cord repair and those directed to improve mobility by exploition of neuroplasticity will be summarized. The promises and challenges of translational basic research in rodent SCI models will be presented.
-
Journal of neurotrauma · May 2017
Effects of stand and step training with epidural stimulation on motor function for standing in chronic complete paraplegics.
Individuals affected by motor complete spinal cord injury are unable to stand, walk, or move their lower limbs voluntarily; this diagnosis normally implies severe limitations for functional recovery. We have recently shown that the appropriate selection of epidural stimulation parameters was critical to promoting full-body, weight-bearing standing with independent knee extension in four individuals with chronic clinically complete paralysis. In the current study, we examined the effects of stand training and subsequent step training with epidural stimulation on motor function for standing in the same four individuals. ⋯ Finally, stand and step training with epidural stimulation were not sufficient to improve motor function for standing without stimulation. These findings show that the spinal circuitry of motor complete paraplegics can generate motor patterns effective for standing in response to task-specific training with optimized stimulation parameters. Conversely, step training can lead to neural adaptations resulting in impaired motor function for standing.