Journal of neurotrauma
-
Journal of neurotrauma · May 2017
Review Meta AnalysisTraining to improve walking after pediatric spinal cord injury: A systematic review of parameters and walking outcomes.
Walking or locomotor training is often initiated following pediatric spinal cord injury (SCI). There is no synthesis of the literature on interventions targeting walking for pediatric SCI, although this would assist future clinical trials and interventions. To address this need, we completed a systematic review to summarize the who, what, when, and how of walking interventions in children with SCI. ⋯ Improvements in walking capacity, speed, and distance were comparable between children and adults. There was a trend for greater gains with greater total training durations. There is a paucity of high-quality research examining interventions targeting walking after pediatric SCI; however, intensive training, including practice overground, results in notable improvements.
-
Journal of neurotrauma · May 2017
ReviewSUPRASPINAL CONTROL PREDICTS LOCOMOTOR FUNCTION AND FORECASTS RESPONSIVENESS TO TRAINING AFTER SPINAL CORD INJURY.
Restoration of walking ability is an area of great interest in the rehabilitation of persons with spinal cord injury. Because many cortical, subcortical, and spinal neural centers contribute to locomotor function, it is important that intervention strategies be designed to target neural elements at all levels of the neuraxis that are important for walking ability. While to date most strategies have focused on activation of spinal circuits, more recent studies are investigating the value of engaging supraspinal circuits. ⋯ A number of clinical prediction rules and association models based on common clinical measures have been developed with the intent, respectively, to predict future walking function based on early clinical presentation, and to delineate characteristics associated with responsiveness to training. Further, a number of variables that are correlated with walking function have been identified. Not surprisingly, most of these prediction rules, association models, and correlated variables incorporate measures of volitional lower extremity strength, illustrating the important influence of supraspinal centers in the production of walking behavior in humans.
-
Journal of neurotrauma · May 2017
Randomized Controlled Trial Multicenter StudyRepetitive intermittent hypoxia and locomotor training enhances walking function in incomplete spinal cord injury subjects: A randomized, triple-blind, placebo-controlled clinical trial.
Incomplete spinal cord injuries (iSCI) leave spared synaptic pathways below the level of injury. Intermittent hypoxia (IH) elicits plasticity in the spinal cord and strengthens spared synaptic pathways, expressed as respiratory and somatic functional recovery in experimental animals and humans with iSCI. This study is a randomized, triple-blind, two-arm parallel clinical trial performed in Santiago, Chile. ⋯ We conclude that daily IH enhances walking recovery in subjects with iSCI, confirming previous findings. Moreover, 3 × wIH prolonged or enhanced daily IH-induced walking speed and endurance improvements, respectively, up to 5 weeks post-daily IH. Repetitive IH may be a safe and effective therapeutic alternative for persons with iSCI.
-
Journal of neurotrauma · May 2017
Effects of stand and step training with epidural stimulation on motor function for standing in chronic complete paraplegics.
Individuals affected by motor complete spinal cord injury are unable to stand, walk, or move their lower limbs voluntarily; this diagnosis normally implies severe limitations for functional recovery. We have recently shown that the appropriate selection of epidural stimulation parameters was critical to promoting full-body, weight-bearing standing with independent knee extension in four individuals with chronic clinically complete paralysis. In the current study, we examined the effects of stand training and subsequent step training with epidural stimulation on motor function for standing in the same four individuals. ⋯ Finally, stand and step training with epidural stimulation were not sufficient to improve motor function for standing without stimulation. These findings show that the spinal circuitry of motor complete paraplegics can generate motor patterns effective for standing in response to task-specific training with optimized stimulation parameters. Conversely, step training can lead to neural adaptations resulting in impaired motor function for standing.
-
Journal of neurotrauma · May 2017
Time-Dependent Discrepancies between Assessments of Sensory Function after Incomplete Cervical Spinal Cord Injury.
We recently demonstrated that the electrical perceptual threshold (EPT) examination reveals spared sensory function at lower spinal segments compared with the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) examination in humans with chronic incomplete cervical spinal cord injury (SCI). Here, we investigated whether discrepancies in sensory function detected by both sensory examinations change over time after SCI. Forty-five participants with acute (<1 year), chronic (≥1-10 years), and extended-chronic (>10 years) incomplete cervical SCI and 30 control subjects were tested on dermatomes C2-T4 bilaterally. ⋯ A negative correlation was found between differences in EPT and ISNCSCI sensory levels and time post-injury. These observations indicate that discrepancies between EPT and ISNCSCI sensory scores are time-dependent, with the EPT revealing impaired sensory function above, below, or at the same spinal segment as the ISNCSCI examination. We propose that the EPT is a sensitive tool to assess changes in sensory function over time after incomplete cervical SCI.