Journal of neurotrauma
-
Journal of neurotrauma · Jun 2017
MicroRNAs as Novel Biomarkers for the Diagnosis and Prognosis of Mild and Severe Traumatic Brain Injury.
Traumatic brain injury (TBI) is the leading cause of death and disability in people younger than 45 in Western countries. Despite many studies, no reliable biomarkers have been found to assess TBI severity and predict recovery. MicroRNA (miRNA) profiling has become widely used to identify biomarkers and therapeutic targets. ⋯ In addition, miR-425-5p was a strong predictor of 6-month outcome at T0-1 h and T4-12 h, while miR-21 was predictive of the outcome at T4-12 h. The panel of selected miRNAs shows promise as biomarkers to discriminate mTBI from sTBI. In addition, the selected miRNAs represent new potential therapeutic targets.
-
Journal of neurotrauma · Jun 2017
Amelioration of penetrating ballistic-like brain injury induced cognitive deficits after neuronal differentiation of transplanted human neural stem cells.
Penetrating traumatic brain injury (PTBI) is one of the major cause of death and disability worldwide. Previous studies with penetrating ballistic-like brain injury (PBBI), a PTBI rat model revealed widespread perilesional neurodegeneration, similar to that seen in humans following gunshot wound to the head, which is unmitigated by any available therapies to date. Therefore, we evaluated human neural stem cell (hNSC) engraftment to putatively exploit the potential of cell therapy that has been seen in other central nervous system injury models. ⋯ In a Morris water maze test at 8 weeks post-transplantation, animals with transplants had shorter latency to platform than vehicle-treated animals. However, weak injury-induced cognitive deficits in the control group at the delayed time point confounded benefits of durable engraftment and neuronal differentiation. Therefore, these results justify further studies to progress towards clinical translation of hNSC therapy for PTBI.
-
Journal of neurotrauma · Jun 2017
Comparative StudyHead Impact Exposure in Youth Football: Comparing Age and Weight Based Levels of Play.
Approximately 5,000,000 athletes play organized football in the United States, and youth athletes constitute the largest proportion with ∼3,500,000 participants. Investigations of head impact exposure (HIE) in youth football have been limited in size and duration. The objective of this study was to evaluate HIE of athletes participating in three age- and weight-based levels of play within a single youth football organization over four seasons. ⋯ There were a significantly greater number of impacts per player in a competition than in a practice session for all levels (A, p = 0.0005, B, p = 0.0019, and C, p < 0.0001). Athletes at lower levels experienced a greater percentage of their high magnitude impacts (≥ 80g) in practice, whereas those at the highest level experienced a greater percentage of their high magnitude impacts in competition. These data improve our understanding of HIE within youth football and are an important step in making evidence-based decisions to reduce HIE.
-
Over the past 10 years, our team has attended numerous Paralympic games and International Paralympic Committee (IPC)-sanctioned events where we have accumulated the largest data set to date from elite athletes with spinal cord injury (SCI). This empirical evidence has allowed us to address critical questions related to health and athletic performance in these incredibly medically complex individuals. Namely, does autonomic function influence performance? Can we account for this with the present sport classification? How can we prevent the doping practice of self-inducing life-threatening episodes of hypertension to improve performance (termed "boosting")? How does extremely high participation in routine upper-body wheelchair exercise impact cardiovascular and cerebrovascular disease risk? Is it possible to improve the sport classification to level the playing field between athletes with and without autonomic dysfunction? Herein, we will narratively address these questions, and provide our perspective on future directions and recommendations moving forward. ⋯ We will explore how an easy-to-execute test may be able to predict which individuals are most likely to develop autonomic dysfunctions that may negatively affect their health and performance. We also will evaluate the possibility that a level playing field may be even more difficult to establish than once thought, considering the importance of not only voluntary movement to performance, but also autonomic function. Finally, we also will discuss new changes in screening guidelines at Rio to assess the occurrence of boosting, which is a banned practice by the IPC.
-
Journal of neurotrauma · Jun 2017
ReviewSuboptimal dosing parameters as possible factors in the negative Phase III clinical trials of progesterone in TBI.
To date, outcomes for all Phase III clinical trials for traumatic brain injury (TBI) have been negative. The recent disappointing results of the Progesterone for the Treatment of Traumatic Brain Injury (ProTECT) and Study of a Neuroprotective Agent, Progesterone, in Severe Traumatic Brain Injury (SyNAPSe) Phase III trials for progesterone in TBI have triggered considerable speculation about the reasons for the negative outcomes of these two studies in particular and for those of all previous Phase III TBI clinical trials in general. ⋯ Given these circumstances and the exceptional pleiotropic potential of progesterone as a TBI (and stroke) therapeutic, we are advocating a return to Phase IIB testing. We advocate the incorporation of dose and schedule optimization focused on lower doses and a longer duration of treatment, combined with the addressing of other potential trial design problems raised by the authors in the recently published trial results.